Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length
A semianalytical carbon nanotube field-effect transistor (CNFET) model based on the virtual-source model is presented, which includes series resistance, parasitic capacitance, and direct source-to-drain tunneling leakage. The model is calibrated with recent experimental data down to 9-nm gate length...
Saved in:
Published in | IEEE transactions on electron devices Vol. 60; no. 6; pp. 1834 - 1843 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.06.2013
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A semianalytical carbon nanotube field-effect transistor (CNFET) model based on the virtual-source model is presented, which includes series resistance, parasitic capacitance, and direct source-to-drain tunneling leakage. The model is calibrated with recent experimental data down to 9-nm gate length. Device performance of 22- to 7-nm technology nodes is analyzed. The results suggest that contact resistance is the key performance limiter for CNFETs; direct source-to-drain tunneling results in significant leakage due to low effective mass in carbon nanotubes and prevents further downscaling of the gate length. The design space that minimizes the gate delay in CNFETs subject to OFF-state leakage current ( I OFF ) constraints is explored. Through the optimization of the length of the gate, contact, and extension regions to balance the parasitic effects, the gate delay can be improved by more than 10% at 11- and 7-nm technology nodes compared with the conventional 0.7 × scaling rule, while the OFF-state leakage current remains below 0.5 μA/μm . |
---|---|
AbstractList | A semianalytical carbon nanotube field-effect transistor (CNFET) model based on the virtual-source model is presented, which includes series resistance, parasitic capacitance, and direct source-to-drain tunneling leakage. The model is calibrated with recent experimental data down to 9-nm gate length. Device performance of 22- to 7-nm technology nodes is analyzed. The results suggest that contact resistance is the key performance limiter for CNFETs; direct source-to-drain tunneling results in significant leakage due to low effective mass in carbon nanotubes and prevents further downscaling of the gate length. The design space that minimizes the gate delay in CNFETs subject to OFF-state leakage current ( I OFF ) constraints is explored. Through the optimization of the length of the gate, contact, and extension regions to balance the parasitic effects, the gate delay can be improved by more than 10% at 11- and 7-nm technology nodes compared with the conventional 0.7 × scaling rule, while the OFF-state leakage current remains below 0.5 μA/μm . |
Author | Jieying Luo Franklin, A. D. Ximeng Guan Pop, E. Lan Wei Wong, H. P. Chi-Shuen Lee Antoniadis, D. A. |
Author_xml | – sequence: 1 surname: Jieying Luo fullname: Jieying Luo email: ivyluo@stanford.edu organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA – sequence: 2 surname: Lan Wei fullname: Lan Wei email: lwei@altera.com organization: Microsyst. Technol. Labs., Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 3 surname: Chi-Shuen Lee fullname: Chi-Shuen Lee email: chishuen@stanford.edu organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA – sequence: 4 givenname: A. D. surname: Franklin fullname: Franklin, A. D. email: aaronf@us.ibm.com organization: IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA – sequence: 5 surname: Ximeng Guan fullname: Ximeng Guan email: xguan@us.ibm.com organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA – sequence: 6 givenname: E. surname: Pop fullname: Pop, E. email: epop@illinois.edu organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 7 givenname: D. A. surname: Antoniadis fullname: Antoniadis, D. A. email: daa@mtl.mit.edu organization: Microsyst. Technol. Labs., Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 8 givenname: H. P. surname: Wong fullname: Wong, H. P. email: hspwong@stanford.edu organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784608$$DView record in Pascal Francis |
BookMark | eNp9kD9PHDEQxa2ISByQHimNm5R7-N967TK6OwjSBZqLUq5mvbPgaM8-2UYhHyPfOEaHKCgyzWik33sz887ISYgBCbnkbMk5s1e7zXopGJdLIVrDhPxAFrxtu8ZqpU_IgjFuGiuNPCVnOf-qo1ZKLMjfVdwfwBX6PY440ykmuoI0xEDvIMTyNCC99jiPzWaasGK7BCH7XGLK9Da4-Wn04YHexeBHhNkXj5lCGKvJ7IcEBUf605dHunk-YPJ7DAVmuoYCdB1_B1oitU3Y05tK0i2Gh_J4QT5OMGf89NrPyY_rzW71rdne39yuvm4bJ6wsDXdmGkzbWmZrTZ1CJkcJChiqwapWGyVRKQZWWy2M65AbZlGLEZQTEuU5-XL0PUB2ME_1Medzf6hXQvrTi64zSjNTOXbkXIo5J5zeEM76l-j7Gn3_En3_Gn2V6HcS5wsUH0NJ4Of_CT8fhR4R3_boliumOvkPaGGS7Q |
CODEN | IETDAI |
CitedBy_id | crossref_primary_10_3390_electronics10222835 crossref_primary_10_1007_s11664_024_10921_4 crossref_primary_10_1109_TED_2021_3119262 crossref_primary_10_1016_j_aeue_2019_153035 crossref_primary_10_1109_JFLEX_2023_3237991 crossref_primary_10_1109_TNANO_2020_2978816 crossref_primary_10_1002_jnm_2895 crossref_primary_10_3390_electronics13030605 crossref_primary_10_1007_s10825_017_0952_4 crossref_primary_10_1016_j_mattod_2014_07_008 crossref_primary_10_1016_j_mejo_2019_01_003 crossref_primary_10_3938_jkps_68_251 crossref_primary_10_1108_COMPEL_01_2020_0039 crossref_primary_10_1007_s10825_017_1026_3 crossref_primary_10_1007_s10470_017_0951_1 crossref_primary_10_1049_iet_cds_2019_0516 crossref_primary_10_1149_2_0161610jss crossref_primary_10_1021_acsnano_4c17376 crossref_primary_10_1149_2162_8777_ac7613 crossref_primary_10_1155_2016_6303725 crossref_primary_10_1080_1206212X_2017_1415111 crossref_primary_10_1007_s10825_017_0980_0 crossref_primary_10_1109_TED_2015_2457453 crossref_primary_10_1016_j_chip_2023_100052 crossref_primary_10_1109_TVLSI_2020_2976734 crossref_primary_10_1016_j_aeue_2020_153491 crossref_primary_10_26634_jele_13_2_19383 crossref_primary_10_1007_s41870_021_00757_0 crossref_primary_10_1557_mrs_2014_164 crossref_primary_10_1149_2162_8777_abedd5 crossref_primary_10_1002_jnm_2786 crossref_primary_10_1007_s10825_016_0823_4 crossref_primary_10_3390_electronics13030620 crossref_primary_10_1016_j_aeue_2023_155099 crossref_primary_10_1051_epjap_2017170040 crossref_primary_10_1007_s10825_019_01362_y crossref_primary_10_1016_j_sna_2019_06_003 crossref_primary_10_1016_j_mejo_2020_104889 crossref_primary_10_1088_1674_4926_38_2_025003 crossref_primary_10_1016_j_micpro_2019_03_001 crossref_primary_10_1088_1402_4896_ace855 crossref_primary_10_3390_electronics9122199 crossref_primary_10_1149_2_0151602jss crossref_primary_10_1109_TED_2015_2457424 crossref_primary_10_1109_TCSII_2017_2781139 crossref_primary_10_1002_jnm_2261 crossref_primary_10_1149_2_0011608jss crossref_primary_10_1007_s40089_015_0165_4 crossref_primary_10_1109_TED_2014_2373149 crossref_primary_10_1149_2162_8777_ad3674 crossref_primary_10_1109_TED_2017_2721540 crossref_primary_10_1142_S0219581X17500090 crossref_primary_10_1109_TCAD_2015_2415492 crossref_primary_10_1063_1_5098322 crossref_primary_10_1002_cta_3251 crossref_primary_10_1016_j_matpr_2021_10_327 |
Cites_doi | 10.1109/IEDM.2011.6131595 10.1109/TED.2007.902047 10.1109/TED.2009.2028625 10.1143/APEX.3.105102 10.1103/PhysRevLett.83.5174 10.1109/IEDM.2007.4419056 10.1109/TED.2007.909030 10.1109/TNANO.2008.2008516 10.1088/0034-4885/69/3/R01 10.1109/TNANO.2007.896844 10.1109/TED.2011.2170216 10.1109/TNANO.2008.2006903 10.1088/0957-4484/21/16/165201 10.1021/nl203701g 10.1109/TCAD.2012.2187527 10.1021/nn301302n 10.1017/CBO9780511813962 10.1109/TED.2009.2033168 10.1063/1.2983744 10.1109/TED.2011.2153858 10.1109/TED.2007.911078 10.1109/IEDM.2011.6131531 10.1109/TED.2010.2084351 10.1021/nl062843f 10.1109/TNANO.2010.2049499 10.1038/nnano.2011.39 10.1109/TNANO.2009.2016562 10.1109/55.863106 10.1021/nl047931j 10.1109/JSSC.1974.1050511 10.1109/TNANO.2010.2076323 10.1063/1.126789 10.1038/nnano.2007.300 10.1038/nnano.2010.220 10.1103/PhysRevLett.101.256804 10.1017/CBO9780511805776 10.1063/1.1840096 10.1109/TED.2009.2024022 10.1038/nmat769 10.1109/IEDM.2011.6131594 10.1109/TNANO.2009.2017019 10.1109/IEDM.2011.6131600 10.1109/TNANO.2004.842073 10.1109/TED.2012.2200688 10.1063/1.4731776 10.1109/LED.2009.2027615 10.1109/LED.2010.2095821 10.1109/TED.2008.2010573 10.1038/ncomms1682 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS |
Copyright_xml | – notice: 2014 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW |
DOI | 10.1109/TED.2013.2258023 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1557-9646 |
EndPage | 1843 |
ExternalDocumentID | 27784608 10_1109_TED_2013_2258023 6514047 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION RIG IQODW |
ID | FETCH-LOGICAL-c293t-1c8fb855909999f74e03d3a4a0e4b9456843e440a969628c7e1809e62da4c23e3 |
IEDL.DBID | RIE |
ISSN | 0018-9383 |
IngestDate | Mon Jul 21 09:16:03 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Tue Jul 01 01:46:00 EDT 2025 Tue Aug 26 16:39:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Parasitic behavior Performance evaluation Nanotube devices carbon nanotube field effect transistor (CNFET) Spurious capacity Electric stress Tunnel effect Carbon nanotubes Contact resistance Compact design Optimization Nanoelectronics Field effect transistor direct source-to-drain tunneling Virtual reality Carbon nanotube (CNT) Leakage current Delay time Miniaturization Series resistance Effective mass Limiter Non ideality |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-1c8fb855909999f74e03d3a4a0e4b9456843e440a969628c7e1809e62da4c23e3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_6514047 crossref_primary_10_1109_TED_2013_2258023 pascalfrancis_primary_27784608 crossref_citationtrail_10_1109_TED_2013_2258023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on electron devices |
PublicationTitleAbbrev | TED |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | haensch (ref50) 2012 ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 (ref51) 2011 ref42 ref41 (ref49) 2009 ref44 ref43 (ref40) 2001 akinwande (ref33) 2011 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 young (ref20) 2011 ref24 ref23 ref26 ref22 ref21 ref28 ref27 budima (ref25) 2010 ref29 |
References_xml | – ident: ref7 doi: 10.1109/IEDM.2011.6131595 – ident: ref36 doi: 10.1109/TED.2007.902047 – ident: ref16 doi: 10.1109/TED.2009.2028625 – ident: ref8 doi: 10.1143/APEX.3.105102 – ident: ref43 doi: 10.1103/PhysRevLett.83.5174 – year: 2012 ident: ref50 publication-title: private communication – year: 2011 ident: ref33 publication-title: Carbon Nanotube and Graphene Device Physics – ident: ref42 doi: 10.1109/IEDM.2007.4419056 – ident: ref31 doi: 10.1109/TED.2007.909030 – year: 2010 ident: ref25 publication-title: Cylindrical CNT MOSFET Simulator – ident: ref27 doi: 10.1109/TNANO.2008.2008516 – ident: ref37 doi: 10.1088/0034-4885/69/3/R01 – ident: ref24 doi: 10.1109/TNANO.2007.896844 – ident: ref52 doi: 10.1109/TED.2011.2170216 – ident: ref32 doi: 10.1109/TNANO.2008.2006903 – year: 2011 ident: ref51 publication-title: ITRS Roadmap – ident: ref9 doi: 10.1088/0957-4484/21/16/165201 – ident: ref29 doi: 10.1021/nl203701g – ident: ref13 doi: 10.1109/TCAD.2012.2187527 – ident: ref55 doi: 10.1021/nn301302n – ident: ref45 doi: 10.1017/CBO9780511813962 – ident: ref6 doi: 10.1109/TED.2009.2033168 – ident: ref46 doi: 10.1063/1.2983744 – ident: ref39 doi: 10.1109/TED.2011.2153858 – ident: ref48 doi: 10.1109/TED.2007.911078 – year: 2011 ident: ref20 article-title: The impact of MOSFET extrinsic R, C parasitics and potential solutions publication-title: Proc IEEE Int Electron Devices Meeting – ident: ref22 doi: 10.1109/IEDM.2011.6131531 – ident: ref14 doi: 10.1109/TED.2010.2084351 – ident: ref47 doi: 10.1021/nl062843f – ident: ref15 doi: 10.1109/TNANO.2010.2049499 – ident: ref54 doi: 10.1038/nnano.2011.39 – ident: ref4 doi: 10.1109/TNANO.2009.2016562 – ident: ref41 doi: 10.1109/55.863106 – ident: ref53 doi: 10.1021/nl047931j – year: 2009 ident: ref49 publication-title: Sentaurus TCAD Tools – ident: ref56 doi: 10.1109/JSSC.1974.1050511 – ident: ref5 doi: 10.1109/TNANO.2010.2076323 – ident: ref23 doi: 10.1063/1.126789 – ident: ref2 doi: 10.1038/nnano.2007.300 – ident: ref28 doi: 10.1038/nnano.2010.220 – ident: ref35 doi: 10.1103/PhysRevLett.101.256804 – ident: ref44 doi: 10.1017/CBO9780511805776 – ident: ref17 doi: 10.1063/1.1840096 – ident: ref26 doi: 10.1109/TED.2009.2024022 – year: 2001 ident: ref40 publication-title: Maxwell 3D – ident: ref30 doi: 10.1038/nmat769 – ident: ref3 doi: 10.1109/IEDM.2011.6131594 – ident: ref18 doi: 10.1109/TNANO.2009.2017019 – ident: ref12 doi: 10.1109/IEDM.2011.6131600 – ident: ref1 doi: 10.1109/TNANO.2004.842073 – ident: ref21 doi: 10.1109/TED.2012.2200688 – ident: ref11 doi: 10.1063/1.4731776 – ident: ref34 doi: 10.1109/LED.2009.2027615 – ident: ref38 doi: 10.1109/LED.2010.2095821 – ident: ref19 doi: 10.1109/TED.2008.2010573 – ident: ref10 doi: 10.1038/ncomms1682 |
SSID | ssj0016442 |
Score | 2.37133 |
Snippet | A semianalytical carbon nanotube field-effect transistor (CNFET) model based on the virtual-source model is presented, which includes series resistance,... |
SourceID | pascalfrancis crossref ieee |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1834 |
SubjectTerms | Applied sciences Carbon nanotube (CNT) carbon nanotube field effect transistor (CNFET) CNTFETs contact resistance Cross-disciplinary physics: materials science; rheology Data models direct source-to-drain tunneling Electronics Exact sciences and technology Integrated circuit modeling Logic gates Materials science Molecular electronics, nanoelectronics Nanoscale materials and structures: fabrication and characterization Nanotubes Numerical models Physics Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Transistors Tunneling |
Title | Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length |
URI | https://ieeexplore.ieee.org/document/6514047 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXanuBAgYLYAtUcuCCRXSf2JvYRtV1ViPZERW-RPyliSVDrXPgX_GNmkmy0rSrELVJsycpMZt54Zt4w9k6q6KqwRAko7jOphc-MszIrpQo65jEWkvqdzy_Ks0v56Wp5tcM-TL0wIYS--CzM6bHP5fvWdXRVtiiXRAZT7bJdDNyGXq0pY4B-fWAGz_EHxrBrk5LkeoEmgGq4xBx1l_jO7rigfqYKVUSaW_wocZhmseViVvvsfHO4obLkx7xLdu5-3-Nt_N_TP2VPRqwJHwfleMZ2QvOcPd5iIDxgf3p74BLQTLQ1IIKFY3Nj2wbQ7LapswFWVOOWDSzH0Lu2nlnkFtC0rDtyfXCBhsEHQvQYd4NpPFDLlyUWCg9fv6drON0aJAAnJhk4wfAfUgs6a34C3eHB59B8S9cv2OXq9MvxWTZOacgcQoWU5U5FqzAwIaypYyUDF14YaXiQViM-U1IEKbkhHp5CoWYQZVgoC2-kK0QQL9le0zbhFQMnpLZCL12MSnoEnzL3jlJ_iCtLy9WMLTaCq91IYU6TNNZ1H8pwXaOoaxJ1PYp6xt5PO34N9B3_WHtAQpvWjfKasaM7ujG9L6oKwRtXhw_ve80eFcPojIznb9heuunCWwQwyR71mvsX783sLw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADB6VcgAOvApieRQfuCCR3UkySWaOqO1qgd09taK3aF5pEUuC2omQ-Bf8Y-wkG20RQtwiZUYaxY79eWx_ZuyNkJUtfIYSkNxFQqUu0taIKBfSqyquqkRQv_NqnS_OxMfz7HyPvRt7Ybz3XfGZn9Jjl8t3jW3pqmyWZ0QGU9xit9HvZ0nfrTXmDNCz99zgMf7CGHhtk5JczdAIUBVXOkXtJcazG06om6pCNZH6Gj9L1c-z2HEy8wdstT1eX1vyddoGM7U__2Bu_N_zP2T3B7QJ73v1eMT2fP2Y3dvhIDxgvzqLYAPQVLQNIIaFI31lmhrQ8DahNR7mVOUW9TzH0Dm3jlvkGtC4bFpyfrBG0-A8YXqMvEHXDqjpyxAPhYPPX8IlnOyMEoBjHTQcNz9qCA2oqP4GdIsHS19fhMsn7Gx-cnq0iIY5DZFFsBCi2MrKSAxNCG2qqhCepy7VQnMvjEKEJkXqheCamHgSibpBpGE-T5wWNkl9-pTt103tnzGwqVAmVZmtKikcwk8RO0vJP0SWueFywmZbwZV2IDGnWRqbsgtmuCpR1CWJuhxEPWFvxx3fewKPf6w9IKGN6wZ5TdjhDd0Y3ydFgfCNy-d_3_ea3Vmcrpbl8sP60wt2N-kHaUQ8fsn2w1XrXyGcCeaw0-Lfan_veQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+Model+for+Carbon+Nanotube+Field-Effect+Transistors+Including+Nonidealities+and+Calibrated+With+Experimental+Data+Down+to+9-nm+Gate+Length&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Jieying+Luo&rft.au=Lan+Wei&rft.au=Chi-Shuen+Lee&rft.au=Franklin%2C+A.+D.&rft.date=2013-06-01&rft.pub=IEEE&rft.issn=0018-9383&rft.volume=60&rft.issue=6&rft.spage=1834&rft.epage=1843&rft_id=info:doi/10.1109%2FTED.2013.2258023&rft.externalDocID=6514047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |