Control Design for Nonlinear Flexible Wings of a Robotic Aircraft
In this brief, the control problem for flexible wings of a robotic aircraft is addressed by using boundary control schemes. Inspired by birds and bats, the wing with flexibility and articulation is modeled as a distributed parameter system described by hybrid partial differential equations and ordin...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 25; no. 1; pp. 351 - 357 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this brief, the control problem for flexible wings of a robotic aircraft is addressed by using boundary control schemes. Inspired by birds and bats, the wing with flexibility and articulation is modeled as a distributed parameter system described by hybrid partial differential equations and ordinary differential equations. Boundary control for both wing twist and bending is proposed on the original coupled dynamics, and bounded stability is proved by introducing a proper Lyapunov function. The effectiveness of the proposed control is verified by simulations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2016.2536708 |