e-PoS: Making Proof-of-Stake Decentralized and Fair

Blockchain applications that rely on the Proof-of-Work (PoW) have increasingly become energy inefficient with a staggering carbon footprint. In contrast, energy efficient alternative consensus protocols such as Proof-of-Stake (PoS) may cause centralization and unfairness in the blockchain system. To...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 32; no. 8; pp. 1961 - 1973
Main Authors Saad, Muhammad, Qin, Zhan, Ren, Kui, Nyang, DaeHun, Mohaisen, David
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Blockchain applications that rely on the Proof-of-Work (PoW) have increasingly become energy inefficient with a staggering carbon footprint. In contrast, energy efficient alternative consensus protocols such as Proof-of-Stake (PoS) may cause centralization and unfairness in the blockchain system. To address these challenges, we propose a modular version of PoS-based blockchain systems called e-PoS that resists the centralization of network resources by extending mining opportunities to a wider set of stakeholders. Moreover, e-PoS leverages the in-built system operations to promote fair mining practices by penalizing malicious entities. We validate e-PoS 's achievable objectives through theoretical analysis and simulations. Our results show that e-PoS ensures fairness and decentralization, and can be applied to existing blockchain applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2020.3048853