e-PoS: Making Proof-of-Stake Decentralized and Fair
Blockchain applications that rely on the Proof-of-Work (PoW) have increasingly become energy inefficient with a staggering carbon footprint. In contrast, energy efficient alternative consensus protocols such as Proof-of-Stake (PoS) may cause centralization and unfairness in the blockchain system. To...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 32; no. 8; pp. 1961 - 1973 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Blockchain applications that rely on the Proof-of-Work (PoW) have increasingly become energy inefficient with a staggering carbon footprint. In contrast, energy efficient alternative consensus protocols such as Proof-of-Stake (PoS) may cause centralization and unfairness in the blockchain system. To address these challenges, we propose a modular version of PoS-based blockchain systems called e-PoS that resists the centralization of network resources by extending mining opportunities to a wider set of stakeholders. Moreover, e-PoS leverages the in-built system operations to promote fair mining practices by penalizing malicious entities. We validate e-PoS 's achievable objectives through theoretical analysis and simulations. Our results show that e-PoS ensures fairness and decentralization, and can be applied to existing blockchain applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1045-9219 1558-2183 |
DOI: | 10.1109/TPDS.2020.3048853 |