Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay

Summary This paper deals with optimization and design of an integer order–based and fractional order–based proportional integral derivative (PID) controller tuned by particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms. These algorithms were used to find the best parameters f...

Full description

Saved in:
Bibliographic Details
Published inOptimal control applications & methods Vol. 39; no. 4; pp. 1431 - 1450
Main Authors Bingul, Zafer, Karahan, Oguzhan
Format Journal Article
LanguageEnglish
Published Glasgow Wiley Subscription Services, Inc 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary This paper deals with optimization and design of an integer order–based and fractional order–based proportional integral derivative (PID) controller tuned by particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms. These algorithms were used to find the best parameters for the best controller performance. A comparative study has been made to highlight the advantage of using ABC‐based controller over a PSO‐based controller. The validity of the controller tuning algorithms was tested in 2 different systems with time delay and a nonminimum phase zero used commonly in process control. The optimal tuning process of the PID and fractional order PID controllers has also been performed with 3 different cost functions. From the perspectives of time‐domain performance criteria, such as settling time, rise time, overshoot, and steady‐state error, the controller tuned by ABC gives better dynamic performances than controllers tuned by the PSO. Moreover, the results obtained from robustness analysis showed that the parameters of controller tuned by ABC are quite robust under internal and external disturbances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-2087
1099-1514
DOI:10.1002/oca.2419