Wire Arc Deposition Additive Manufacturing and Experimental Study of 316L Stainless Steel by CMT + P Process

The cold metal transfer plus pulse (CMT + P) process was performed to produce a 316L vertical wall through the single-channel multi-layer deposition method. The microstructure of different regions on deposited samples was observed by an optical microscope and a scanning electron microscope (SEM). Th...

Full description

Saved in:
Bibliographic Details
Published inMetals (Basel ) Vol. 10; no. 11; p. 1419
Main Authors Xie, Bin, Xue, Jiaxiang, Ren, Xianghui
Format Journal Article
LanguageEnglish
Published MDPI AG 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The cold metal transfer plus pulse (CMT + P) process was performed to produce a 316L vertical wall through the single-channel multi-layer deposition method. The microstructure of different regions on deposited samples was observed by an optical microscope and a scanning electron microscope (SEM). The phase composition of the as-deposited wall was checked by X-ray diffraction, and the element distribution in the structure was analyzed by an energy-dispersive spectrometer. The tensile strength and microhardness of samples were tested, and the fracture morphology was observed by an SEM. Finally, the electrochemical corrosion characteristics of the as-deposited wall in different regions along the building direction were tested. Results from the experiments indicated that the microstructure of metallography showed a layer band. The metallurgical bounding between layers was carried out by dendrite remelting and epitaxial growth. Along the building direction, the alloy of different regions solidified in an ferritic-austenitic (FA) manner, and due to having undergone different heat histories, their SEM microstructures were significantly distinct. The ultimate tensile strength (UTS) and yield strength (YS) of the vertical specimens were higher than those of the horizontal specimens, displaying obvious anisotropy. Due to a large amount of precipitation of precipitated phases in terms of intermetallic compounds in the middle and upper regions, the tensile strength and microhardness along the building direction showed a trend of first decreasing and then increasing. In the bottom region, a small amount of ferrite precipitated in the austenite matrix, while in the middle of the as-deposited wall, the amount of ferrite gradually increased and was distributed in the austenite matrix as a network. However, due to the heat accumulation effect, the ferrite dissolved into austenite in large quantities and the austenite showed an obvious increase in size in the top region. A stable passivation film was caused by a relatively low dislocation density and grain boundary number, and the middle region of the arc as-deposited wall had the best corrosion resistance. The large consumption of chromium (Cr) atoms and material stripping in the top region resulted in the integrity of the passivation film in this region being the weakest, resulting in the lowest corrosion resistance.
ISSN:2075-4701
2075-4701
DOI:10.3390/met10111419