Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition

Following acetylation, newly synthesized H3-H4 is directly transferred from the histone chaperone anti-silencing factor 1 (Asf1) to chromatin assembly factor 1 (CAF-1), another histone chaperone that is critical for the deposition of H3-H4 onto replicating DNA. However, it is unknown how CAF-1 binds...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 40; no. 20; pp. 10139 - 10149
Main Authors Winkler, Duane D, Zhou, Hui, Dar, Mohd A, Zhang, Zhiguo, Luger, Karolin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Following acetylation, newly synthesized H3-H4 is directly transferred from the histone chaperone anti-silencing factor 1 (Asf1) to chromatin assembly factor 1 (CAF-1), another histone chaperone that is critical for the deposition of H3-H4 onto replicating DNA. However, it is unknown how CAF-1 binds and delivers H3-H4 to the DNA. Here, we show that CAF-1 binds recombinant H3-H4 with 10- to 20-fold higher affinity than H2A-H2B in vitro, and H3K56Ac increases the binding affinity of CAF-1 toward H3-H4 2-fold. These results provide a quantitative thermodynamic explanation for the specific H3-H4 histone chaperone activity of CAF-1. Surprisingly, H3-H4 exists as a dimer rather than as a canonical tetramer at mid-to-low nanomolar concentrations. A single CAF-1 molecule binds a cross-linked (H3-H4)2 tetramer, or two H3-H4 dimers that contain mutations at the (H3-H4)2 tetramerization interface. These results suggest that CAF-1 binds to two H3-H4 dimers in a manner that promotes formation of a (H3-H4)2 tetramer. Consistent with this idea, we confirm that CAF-1 synchronously binds two H3-H4 dimers derived from two different histone genes in vivo. Together, the data illustrate a clear mechanism for CAF-1-associated H3-H4 chaperone activity in the context of de novo nucleosome (re)assembly following DNA replication.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gks812