Polycaprolactone and its derivatives for drug delivery
Polycaprolactone (PCL) is polymer of 21st centuries. PCL is a biodegradable and biocompatible polymer used for various healthcare applications. This review explores the properties, synthesis, and processing of PCL. The use of PCL polymer for nanoparticles (NPs), microparticles, films, and fibers off...
Saved in:
Published in | Polymers for advanced technologies Vol. 34; no. 10; pp. 3296 - 3316 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.10.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycaprolactone (PCL) is polymer of 21st centuries. PCL is a biodegradable and biocompatible polymer used for various healthcare applications. This review explores the properties, synthesis, and processing of PCL. The use of PCL polymer for nanoparticles (NPs), microparticles, films, and fibers offers several advantages for biomedical applications. The review highlights the potential of PCL‐based materials for tissue engineering, drug delivery, wound healing, and implantable medical devices. We also critically analyzed challenges in PCL‐based materials and the strategies used to overcome for successful translation into clinical applications. Overall, this review provides a comprehensive overview of PCL as a valuable biomaterial for healthcare applications. |
---|---|
AbstractList | Polycaprolactone (PCL) is polymer of 21st centuries. PCL is a biodegradable and biocompatible polymer used for various healthcare applications. This review explores the properties, synthesis, and processing of PCL. The use of PCL polymer for nanoparticles (NPs), microparticles, films, and fibers offers several advantages for biomedical applications. The review highlights the potential of PCL‐based materials for tissue engineering, drug delivery, wound healing, and implantable medical devices. We also critically analyzed challenges in PCL‐based materials and the strategies used to overcome for successful translation into clinical applications. Overall, this review provides a comprehensive overview of PCL as a valuable biomaterial for healthcare applications. |
Author | Pawar, Ranjitsinh Pathan, Anam Kapare, Harshad Nagaraj, Srishti Wavhale, Ravindra Giram, Prabhanjan |
Author_xml | – sequence: 1 givenname: Ranjitsinh surname: Pawar fullname: Pawar, Ranjitsinh organization: Bharati Vidyapeeth (Deemed to be University) – sequence: 2 givenname: Anam surname: Pathan fullname: Pathan, Anam organization: Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research – sequence: 3 givenname: Srishti orcidid: 0000-0001-5545-2213 surname: Nagaraj fullname: Nagaraj, Srishti organization: University of Copenhagen – sequence: 4 givenname: Harshad surname: Kapare fullname: Kapare, Harshad organization: Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research – sequence: 5 givenname: Prabhanjan orcidid: 0000-0003-0439-1347 surname: Giram fullname: Giram, Prabhanjan email: prabhanjanpharma@gmail.com organization: The State University of New York – sequence: 6 givenname: Ravindra orcidid: 0000-0003-1614-9742 surname: Wavhale fullname: Wavhale, Ravindra email: ravindra.wavhale@dypvp.edu.in organization: Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research |
BookMark | eNp1kE9LAzEQxYNUsK2CH2HBi5etSbpJNsdS_AcFe6jnkCZZSVk3NclW9ts7tZ5ETzPM-83M403QqAudQ-ia4BnBmN7tdZ5xUuEzNCZYypKwmoyOfUVLQSpxgSYp7TAGTYox4uvQDkbvY2i1yXCq0J0tfE6FddEfdPYHl4omxMLG_g2GLQzicInOG90md_VTp-j14X6zfCpXL4_Py8WqNFTOcWk4M2xr5ltbs6bixFXcgQcpNCiiAlESKbdOWGEodY41hHNSE0qZpZrb-RTdnO6CwY_epax2oY8dvFS05pgxJnEN1OxEmRhSiq5RxmewHroctW8VweqYjYJs1DEbWLj9tbCP_l3H4S-0PKGfvnXDv5xaLzbf_BcQhXPE |
CitedBy_id | crossref_primary_10_1016_j_jddst_2025_106631 crossref_primary_10_1016_j_fpc_2025_02_001 crossref_primary_10_3390_ijms251910766 crossref_primary_10_3390_ma16216834 crossref_primary_10_1002_adhm_202403743 crossref_primary_10_1002_chem_202401727 crossref_primary_10_1016_j_eurpolymj_2025_113817 crossref_primary_10_3390_cosmetics10060152 crossref_primary_10_3390_reactions5030029 crossref_primary_10_1002_adhm_202403689 crossref_primary_10_1002_slct_202403839 crossref_primary_10_1007_s11706_025_0717_0 crossref_primary_10_1021_acs_biomac_4c01004 crossref_primary_10_1016_j_est_2024_112790 crossref_primary_10_1016_j_surfcoat_2024_131002 crossref_primary_10_1007_s42247_024_00702_4 crossref_primary_10_3390_coatings14030256 crossref_primary_10_1080_00914037_2023_2292659 crossref_primary_10_1007_s10853_024_09774_3 crossref_primary_10_1039_D4BM01478B crossref_primary_10_3390_pharmaceutics16050652 crossref_primary_10_3390_polym16060731 crossref_primary_10_1016_j_ijpharm_2024_123826 crossref_primary_10_1021_jacsau_4c00585 crossref_primary_10_1002_marc_202400903 crossref_primary_10_1039_D4PY01425A crossref_primary_10_1039_D4TB01200C crossref_primary_10_1021_acsanm_4c02182 crossref_primary_10_1002_ejoc_202301308 crossref_primary_10_1016_j_cej_2025_161504 crossref_primary_10_1080_02652048_2024_2423631 crossref_primary_10_1007_s00289_024_05305_x crossref_primary_10_3390_polym16091258 crossref_primary_10_1002_pat_6632 crossref_primary_10_1021_acsami_3c18826 crossref_primary_10_1007_s00203_024_03910_y crossref_primary_10_1016_j_bioactmat_2024_07_003 crossref_primary_10_1177_15280837241255396 |
Cites_doi | 10.1016/j.carbpol.2013.09.053 10.1002/app.1976.070201104 10.1016/j.actbio.2008.05.021 10.1016/j.ijpharm.2019.118461 10.1163/092050610X487710 10.1371/journal.pone.0112200 10.1007/s10118‐011‐1057‐3 10.1089/ten.tea.2014.0081 10.3389/fchem.2021.809676 10.1016/j.msec.2019.109798 10.1039/C3RA46914J 10.2147/IJN.S170067 10.1016/S0141‐3910(96)00208‐X 10.1016/j.polymer.2005.04.079 10.1016/S1748‐0132(07)70083‐X 10.1002/jbm.a.30458 10.1002/app.31787 10.1155/2016/7818501 10.3390/molecules24203744 10.1007/978‐1‐4939‐2272‐7_3 10.1016/j.ejps.2012.12.006 10.1039/c39840001505 10.1016/j.ijpharm.2004.01.044 10.1016/j.actbio.2013.04.031 10.1016/j.biomaterials.2011.02.034 10.1016/j.biomaterials.2017.01.008 10.1002/9783527628407 10.1080/713773924 10.1016/j.jconrel.2011.09.064 10.1016/j.ijpharm.2019.05.047 10.1016/j.actbio.2017.07.028 10.1177/039139880602900809 10.1186/s40824‐018‐0126‐x 10.1016/j.ejpb.2011.08.004 10.1016/j.ijpharm.2003.08.011 10.1016/j.ijporl.2015.05.037 10.1016/S0079-6700(01)00039-9 10.1016/S0002‐9378(89)80015‐8 10.1016/S0168‐3659(99)00200‐X 10.1021/acs.biomac.5b01422 10.1586/erc.12.41 10.1016/j.biomaterials.2008.09.025 10.1016/j.compscitech.2005.08.014 10.1021/ma0484072 10.1021/om050512s 10.1016/j.nanoso.2019.100370 10.1021/bm005521t 10.1021/bc000097e 10.1080/10601329608010891 10.1016/j.jconrel.2017.05.028 10.3892/ijmm.2010.593 10.1515/epoly‐2014‐0158 10.1016/j.enzmictec.2004.05.005 10.1089/10763270360697021 10.1016/S0142-9612(03)00263-1 10.1016/j.msec.2020.110913 10.1016/j.biomaterials.2006.09.028 10.1166/mex.2020.1702 10.1016/j.xphs.2017.09.033 10.1002/smll.202303435 10.1002/jbm.b.33519 10.1161/CIRCULATIONAHA.108.795732 10.1016/0142‐9612(93)90063‐8 10.1021/acs.jchemed.0c00325 10.1021/ma200043x 10.1021/acs.bioconjchem.6b00437 10.1016/j.ejps.2017.06.038 10.1016/j.ijpharm.2017.07.077 10.1016/j.addr.2010.11.005 10.1295/polymj.33.38 10.3390/ma13020366 10.1371/journal.pone.0154806 10.1007/s00396‐016‐3968‐6 10.3390/polym13132180 10.1016/S0142-9612(00)00121-6 10.1089/ten.tea.2008.0473 10.1016/j.jddst.2015.07.009 10.1016/j.progpolymsci.2019.05.004 10.1016/j.colsurfb.2017.12.008 10.1016/S0378-5173(02)00483-0 10.1016/j.biomaterials.2008.10.035 10.1002/pola.10740 10.1039/C5TB01598G 10.1021/acs.iecr.6b02300 10.1042/bst0270873 10.1007/s10311‐002‐0005‐4 10.1021/bm034208z 10.1039/c2nr30924f 10.1166/jbt.2013.1110 10.1007/s11051‐020‐05096‐y 10.1016/j.progpolymsci.2010.04.002 10.1021/bc9005267 10.1016/j.ijbiomac.2016.11.040 10.3389/fchem.2020.00156 10.1021/ma00035a001 10.1038/s41598‐019‐40242‐0 10.1111/j.1538-7836.2009.03401.x 10.1016/j.addr.2019.04.008 10.1021/acs.biomac.6b01756 10.1101/cshperspect.a016725 10.1016/B978‐0‐12‐409547‐2.12329‐7 10.1080/10601325.2020.1831392 10.1016/j.polymer.2013.04.045 10.1039/b820162p 10.1089/ten.tea.2009.0680 10.1039/C5RA24942B 10.3109/1061186X.2015.1051049 10.1007/s10856‐008‐3581‐4 10.1016/j.eurpolymj.2020.109908 10.1016/j.contraception.2006.02.013 10.1248/cpb.52.976 10.3390/pharmaceutics13020191 10.1002/mame.201800255 10.1093/annonc/mdh097 10.1016/S0079-6700(97)00039-7 10.1227/01.NEU.0000193533.54580.3F 10.2147/IJN.S75101 10.1021/ar2000138 10.1002/app.1981.070261124 10.1039/C9NJ00659A 10.5999/aps.2014.41.6.638 10.1021/bm0056310 10.1039/c9py01134j 10.1088/1748-6041/6/2/025003 10.1016/j.nantod.2011.02.003 10.1007/s10924‐020‐01826‐4 10.1016/S0928-4931(02)00015-2 10.1080/00914037.2015.1103241 10.1016/j.jobcr.2019.10.003 10.1016/j.biomaterials.2012.05.055 10.1021/ja404491r 10.1021/acs.macromol.1c02325 10.1016/j.eurpolymj.2014 10.1080/10837450.2018.1556689 10.1002/jbm.820190408 10.1039/C6PY01838F 10.1080/09205063.2017.1394711 10.2174/092986710790416290 10.2174/1871520616666160815124014 10.1016/j.biomaterials.2005.09.019 10.1016/S0009‐2509(03)00155‐6 10.1016/j.progpolymsci.2007.05.017 10.1016/j.polymdegradstab.2017.04.015 10.2147/IJN.S39532 10.1016/j.ijpharm.2020.119091 10.1016/j.actbio.2011.10.009 10.1039/C6TB01623E 10.1007/s11095-017-2166-7 10.1016/j.apsb.2021.02.019 10.1016/j.irbm.2018.07.002 10.1016/j.ijpharm.2009.12.010 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/pat.6140 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1099-1581 |
EndPage | 3316 |
ExternalDocumentID | 10_1002_pat_6140 PAT6140 |
Genre | reviewArticle |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2930-c65c5bc3bd85f461e46e14797ac65745c59199be7d7c22ee5f166181225d2a6d3 |
IEDL.DBID | DR2 |
ISSN | 1042-7147 |
IngestDate | Fri Jul 25 10:40:48 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Tue Jul 01 03:29:05 EDT 2025 Wed Jan 22 16:20:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2930-c65c5bc3bd85f461e46e14797ac65745c59199be7d7c22ee5f166181225d2a6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1614-9742 0000-0003-0439-1347 0000-0001-5545-2213 |
PQID | 2860555908 |
PQPubID | 1016450 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2860555908 crossref_citationtrail_10_1002_pat_6140 crossref_primary_10_1002_pat_6140 wiley_primary_10_1002_pat_6140_PAT6140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | Polymers for advanced technologies |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 79 2013; 3 2010; 16 2019; 96 2019; 10 2010; 17 2002; 12 2019; 566 2003; 58 2019; 567 2019; 19 2020; 13 2016; 2016 1996; 70 2020; 10 2003; 9 Suppl 1 2013; 8 2012; 10 2013; 9 2014; 20 1985; 19 2010; 21 2018; 39 2020; 97 2013; 54 2010; 116 2006; 27 2019; 24 1997; 56 2004; 35 2020; 578 2011; 63 2006; 29 2008; 118 2017; 163 2007; 2 2003; 41 2009; 15 2017; 62 2018; 29 2019; 9 2010; 35 2018; 107 1999; 27 2000; 63 2006; 58 1981; 26 2019; 103 2014; 41 2017; 530 2018; 22 2016; 17 2011; 6 2012; 33 2016; 11 2021; 58 2016; 4 2016; 6 2004; 52 2016; 7 2004; 278 2019; 43 2022; 9 2020; 28 2003; 24 2017; 260 2017; 140 1992; 25 2020; 22 2001; 33 2016; 27 2016; 24 2018; 13 1976; 20 2006; 74 2006; 76 1984; 22 2015; 30 2010; 387 1989; 160 2000; 1 2008; 4 2007; 32 2005; 24 1996; 33 2020; 8 2007; 28 2014; 4 2006; 66 1986; 46 2017; 34 2015; 1266 2003; 4 2011; 22 2003; 1 2020; 136 2014; 52 2014; 9 2017; 122 2001; 12 2005; 38 2011; 27 2014; 6 2011; 29 2015; 15 2012; 80 2013; 48 2009; 20 2015; 3 2018; 303 2000; 21 2015; 10 2009 2011; 32 2017; 295 2002 1999; 6 1998; 23 2005; 46 2019; 143 2016; 55 2017; 95 2002; 27 1993; 14 2021; 13 2009; 30 2021; 11 2023 2002; 20 2017; 17 2013; 34 2004; 15 2016; 65 2011; 44 2013; 135 2017 2009; 7 2001; 2 2017; 18 2020; 113 2013 2022; 55 2012; 158 2003; 268 2012; 4 2009; 38 2017; 105 2012; 8 2014; 101 2017; 107 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 Guarino V (e_1_2_9_26_1) 2002 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Matsumura Y (e_1_2_9_88_1) 1986; 46 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 Kalita S (e_1_2_9_144_1) 2015; 10 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_172_1 Abedalwafa M (e_1_2_9_48_1) 2013; 34 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_65_1 Jamela SR (e_1_2_9_84_1) 1996; 70 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 (e_1_2_9_25_1) 2013 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 268 start-page: 23 year: 2003 end-page: 29 article-title: Preparation and characterization of injectable microspheres of contraceptive hormones publication-title: Int J Pharm – volume: 16 start-page: 2485 issue: 8 year: 2010 end-page: 2495 article-title: Beyond cell capture: antibody conjugation improves hemocompatibility for vascular tissue engineering applications publication-title: Tissue Eng Part A – volume: 387 start-page: 129 year: 2010 end-page: 138 article-title: In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends publication-title: Int J Pharm – volume: 6 start-page: 7 issue: 1 year: 1999 end-page: 22 article-title: Endothelial gaps as sites for plasma leakage in inflammation publication-title: UMIC – volume: 4 start-page: 5151 issue: 30 year: 2016 end-page: 5160 article-title: Biodegradable poly(ϵ‐caprolactone) as a controlled drug delivery vehicle of vancomycin for the treatment of MRSA infection publication-title: J Mater Chem B – volume: 27 start-page: 1735 issue: 9 year: 2006 end-page: 1740 article-title: The in vivo degradation, absorption and excretion of PCL‐based implant publication-title: Biomaterials – volume: 13 start-page: 4549 year: 2018 end-page: 4561 article-title: A complex micellar system co‐delivering curcumin with doxorubicin against cardiotoxicity and tumor growth publication-title: Int J Nanomedicine – volume: 21 start-page: 756 year: 2010 end-page: 763 article-title: Development of double‐stranded siRNA labeling method using positron emitter and its in vivo trafficking analyzed by positron emission tomography publication-title: Bioconjug Chem – volume: 97 start-page: 4158 issue: 11 year: 2020 end-page: 4165 article-title: Synthesis of PCL–PEG–PCL triblock copolymer via organocatalytic ring‐opening polymerization and its application as an injectable hydrogel—an interdisciplinary learning trial publication-title: J Chem Educ – volume: 10 start-page: 805 issue: 6 year: 2012 end-page: 815 article-title: Nanomedicine in cardiovascular therapy: recent advancements publication-title: Expert Rev Cardiovasc Ther – volume: 27 start-page: 87 year: 2002 end-page: 133 article-title: Chemical syntheses of biodegradable polymers publication-title: Progr Polym Sci – volume: 30 start-page: 242 issue: 2 year: 2009 end-page: 253 article-title: Biodegradable amphiphilic poly(ethylene oxide)‐block‐polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery publication-title: Biomaterials – volume: 6 start-page: 176 issue: 2 year: 2011 end-page: 185 article-title: Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies publication-title: Nano Today – volume: 34 start-page: 1773 issue: 9 year: 2017 end-page: 1783 article-title: Polycaprolactone based nanoparticles loaded with indomethacin for anti‐inflammatory therapy: from preparation to ex vivo study publication-title: Pharm Res – volume: 107 start-page: 112 year: 2017 end-page: 125 article-title: Macrophage selective photodynamic therapy by meta‐tetra(hydroxyphenyl)chlorin loaded polymeric micelles: a possible treatment for cardiovascular diseases publication-title: Eur J Pharm Sci – volume: 38 start-page: 1190 year: 2005 end-page: 1195 article-title: Tin(II) ethyl hexanoate catalyzed precipitation polymerization of ε‐caprolactone in supercritical carbon dioxide publication-title: Macromolecules – volume: 6 year: 2011 article-title: A poly (ε‐caprolactone) device for sustained release of an anti‐glaucoma drug publication-title: Biomed Mater – volume: 58 start-page: 111 issue: 2 year: 2021 end-page: 129 article-title: Polycaprolactone: a biodegradable polymer with its application in the field of self‐assembly study publication-title: J Macromol S A – volume: 46 start-page: 6387 year: 1986 end-page: 6392 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res – volume: 44 start-page: 1018 issue: 10 year: 2011 end-page: 1028 article-title: In vivo targeted delivery of nanoparticles for theranosis publication-title: Acc Chem Res – volume: 79 start-page: 1299 issue: 8 year: 2015 end-page: 1305 article-title: Antibacterial effect of electrospun polycaprolactone/polyethylene oxide/vancomycin nanofiber mat for prevention of periprosthetic infection and biofilm formation publication-title: Int J Pediatr Otorhinolaryngol – volume: 22 start-page: 1505 year: 1984 article-title: Mechanism of hydrolysis of esters by superoxide publication-title: J Chem Soc Chem Commun – volume: 33 start-page: 38 issue: 1 year: 2001 end-page: 41 article-title: Enzymatic degradation of poly(ε‐caprolactone) fibers in vitro publication-title: Polym J – volume: 101 start-page: 104 issue: 1 year: 2014 end-page: 112 article-title: Design and formulation of trimethylated chitosan‐graft‐poly(ε‐caprolactone) nanoparticles used for gene delivery publication-title: Carbohydr Polym – volume: 15 start-page: 2177 year: 2009 end-page: 2187 article-title: Engineered human skin fabricated using electrospun collagen‐PCL blends: morphogenesis and mechanical properties publication-title: Tissue Eng Part A – volume: 10 start-page: 866 issue: 6 year: 2020 end-page: 876 article-title: Production and enzymatic degradation of poly(ε‐caprolactone)/graphene oxide composites publication-title: Mat Exp – volume: 30 start-page: 879 issue: 5 year: 2009 end-page: 891 article-title: The enhancement of the immune response against antigens through the intranasal administration of poly‐ɛ‐caprolactone‐based nanoparticles publication-title: Biomaterials – volume: 27 start-page: 873 issue: 6 year: 1999 end-page: 881 article-title: The basic science of brain‐tumour gene therapy publication-title: Biochem Soc Trans – volume: 52 start-page: 976 year: 2004 end-page: 979 article-title: Influence of manufacturing parameters on development of contraceptive steroid loaded injectable microspheres publication-title: Chem Pharm Bull – volume: 35 start-page: 321 issue: 4 year: 2004 end-page: 326 article-title: Lipase‐catalyzed degradation of poly(ε‐caprolactone) publication-title: Enzyme Microb Technol – volume: 2016 start-page: 1 year: 2016 end-page: 13 article-title: Functionalized solid‐sphere PEG‐ ‐PCL nanoparticles to target brain capillary endothelial cells in vitro publication-title: J Nanomater – volume: 55 start-page: 2210 issue: 6 year: 2022 end-page: 2221 article-title: Synthesis and properties of functionalized poly(ε‐caprolactone); chain polymerization followed by polycondensation in one pot with initiator and catalyst in one molecule. Synthesis and molecular structures publication-title: Macromolecules – volume: 29 start-page: 863 year: 2018 end-page: 893 article-title: PCL and PCL‐based materials in biomedical applications publication-title: J Biomater Sci Polym Ed – volume: 55 start-page: 12532 issue: 49 year: 2016 end-page: 12538 article-title: Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram‐positive and gram‐negative bacteria publication-title: Ind Eng Chem Res – volume: 1266 start-page: 29 year: 2015 end-page: 53 – volume: 135 start-page: 17655 year: 2013 end-page: 17658 article-title: Acid‐degradable polymer‐caged lipoplex (PCL) platform for siRNA delivery: facile cellular triggered release of siRNA publication-title: J Am Chem Soc – volume: 80 start-page: 241 issue: 2 year: 2012 end-page: 246 article-title: Expert opinion: responsive polymer nanoparticles in cancer therapy publication-title: Eur J Pharm Biopharm – volume: 566 start-page: 1 year: 2019 end-page: 10 article-title: Anandamide‐nanoformulation obtained by electrospraying for cardiovascular therapy publication-title: Int J Pharm – volume: 260 start-page: 46 year: 2017 end-page: 60 article-title: PEG‐PCL‐based nanomedicines: a biodegradable drug delivery system and its application publication-title: J Control Release – volume: 38 start-page: 3484 year: 2009 end-page: 3504 article-title: Synthesis of polycaprolactone: a review publication-title: Chem Soc Rev – volume: 105 start-page: 145 issue: 1 year: 2017 end-page: 154 article-title: Polyethyleneimine‐associated polycaprolactone—superparamagnetic iron oxide nanoparticles as a gene delivery vector publication-title: J Biomed Mater Res – Part B Appl Biomater – volume: 24 start-page: 20 year: 2019 article-title: Biodegradable polymers for gene delivery publication-title: Molecules – volume: 34 start-page: 123 year: 2013 end-page: 140 article-title: Biodegradable poly‐epsilon‐caprolactone (PCL) for tissue engineering applications: a review publication-title: Rev Adv Mater Sci – volume: 295 start-page: 1 issue: 1 year: 2017 end-page: 12 article-title: pH‐responsive release of paclitaxel from hydrazone‐containing biodegradable micelles publication-title: Colloid Polym Sci – volume: 303 start-page: 1 issue: 9 year: 2018 end-page: 8 article-title: Incorporation of polycaprolactone to cyclodextrin‐based nanocarrier for potent gene delivery publication-title: Macromol Mater Eng – volume: 13 start-page: 366 issue: 2 year: 2020 article-title: Drug delivery with polymeric nanocarriers—cellular uptake mechanisms publication-title: Materials – volume: 6 start-page: 14403 issue: 17 year: 2016 end-page: 14415 article-title: Poly(caprolactone)‐poly(ethylene glycol)‐poly(caprolactone) (PCL‐PEG‐PCL) nanoparticles: a valuable and efficient system for in vitro and in vivo delivery of curcumin publication-title: RSC Adv – volume: 4 start-page: 1800 year: 2003 end-page: 1804 article-title: Synthesis of poly(ε‐caprolactone)‐b‐poly(γ‐benzyl‐L‐glutamic acid) block copolymer using amino organic calcium catalyst publication-title: Biomacromolecules – volume: 578 year: 2020 article-title: Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model publication-title: Int J Pharm – volume: 70 start-page: 669 issue: 7 year: 1996 end-page: 671 article-title: Poly(ε‐caprolactone) microspheres as a vaccine carrier publication-title: Curr Sci – volume: 8 start-page: 971 year: 2013 end-page: 982 article-title: Preparation, characterization and application of star‐shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer publication-title: IJN – volume: 22 start-page: 16 issue: 1 year: 2018 article-title: Fabrication and optimization of nanodiamonds‐composited poly(ε‐caprolactone) fibrous matrices for potential regeneration of hard tissues publication-title: Biomater Res – volume: 28 start-page: 2947 issue: 11 year: 2020 end-page: 2955 article-title: Biodegradation of polycaprolactone (PCL) with different molecular weights by Lipase publication-title: J Polym Environ – volume: 28 start-page: 735 issue: 4 year: 2007 end-page: 744 article-title: A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier publication-title: Biomaterials – volume: 23 start-page: 1273 year: 1998 end-page: 1335 article-title: Biodegradable polymers publication-title: Progr Polym Sci – volume: 33 start-page: 6551 issue: 27 year: 2012 end-page: 6558 article-title: Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine‐graft‐polycaprolactone‐block‐poly(ethylene glycol) copolymers publication-title: Biomaterials – volume: 8 start-page: 302 issue: 1 year: 2012 end-page: 312 article-title: Effect of self‐assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds publication-title: Acta Biomater – volume: 7 start-page: 7455 issue: 48 year: 2016 end-page: 7468 article-title: Theranostic unimolecular micelles of highly fluorescent conjugated polymer bottlebrushes for far red/near infrared bioimaging and efficient anticancer drug delivery publication-title: Polym Chem – year: 2002 article-title: Polycaprolactone: synthesis, properties, and applications publication-title: Encyclo Polym Sci Technol – volume: 20 start-page: 2963 issue: 11 year: 1976 end-page: 2970 article-title: Study of poly‐ε‐caprolactone bulk degradation publication-title: J Appl Polym Sci – volume: 65 start-page: 255 year: 2016 end-page: 265 article-title: Polycaprolactone‐based biomaterials for tissue engineering and drug delivery: current scenario and challenges publication-title: Int J Polymetric Mater polymeric Biomater – volume: 24 start-page: 663 issue: 6 year: 2019 end-page: 670 article-title: In vivo study of mPEG–PCL as a nanocarriers for anti‐inflammatory drug delivery of simvastatin publication-title: Pharm Dev Technol – volume: 19 start-page: 437 issue: 4 year: 1985 end-page: 444 article-title: The intracellular degradation of poly(epsilon‐caprolactone) publication-title: J Biomed Mater Res – volume: 17 start-page: 744 issue: 3 year: 2016 end-page: 755 article-title: Fate of PLA and PCL‐based polymeric nanocarriers in cellular and animal models of triple‐negative breast cancer publication-title: Biomacromolecules – volume: 27 start-page: 2225 issue: 10 year: 2016 end-page: 2238 article-title: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? publication-title: Bioconjug Chem – volume: 30 start-page: 408 year: 2015 end-page: 416 article-title: Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease publication-title: J Drug Deliv Sci Technol – volume: 74 start-page: 141 year: 2006 end-page: 147 article-title: A biodegradable levonorgestrel‐releasing implant made of PCL/F68 compound as tested in rats and dogs publication-title: Contraception – volume: 10 start-page: 2971 year: 2015 end-page: 2984 article-title: Chloramphenicol encapsulated in poly‐ε‐caprolactone‐pluronic composite: nanoparticles for treatment of MRSA‐infected burn wounds publication-title: Int J Nanomedicine – volume: 158 start-page: 15 year: 2012 end-page: 33 article-title: Poly‐ε‐caprolactone based formulations for drug delivery and tissue engineering: a review publication-title: J Control Release – volume: 35 start-page: 1217 year: 2010 end-page: 1256 article-title: The return of a forgotten polymer – polycaprolactone in the 21st century publication-title: Prog Polym Sci (Oxford) – volume: 158 start-page: 15 issue: 1 year: 2012 end-page: 33 article-title: Poly‐є‐caprolactone based formulations for drug delivery and tissue engineering: a review publication-title: J Control Release – volume: 58 start-page: 2911 issue: 13 year: 2003 end-page: 2919 article-title: Enzymatic degradation of poly (ε‐caprolactone), poly (vinyl acetate) and their blends by lipases publication-title: Chem Eng Sci – volume: 76 start-page: 63 year: 2006 end-page: 72 article-title: Characterization of polymeric poly(epsilon‐caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids publication-title: J Biomed Mater Res Part A – volume: 160 start-page: 1292 year: 1989 end-page: 1295 article-title: Clinical evaluation of the Capronor contraceptive implant: preliminary report publication-title: Am J Obstet Gynecol – volume: 12 start-page: 127 year: 2002 end-page: 138 article-title: Biodegradable poly(o‐caprolactone) nanoparticles for tumor‐targeted delivery of tamoxifen publication-title: Int J Pharm – volume: 9 issue: 11 year: 2014 article-title: PSMA ligand conjugated PCL‐PEG polymeric micelles targeted to prostate cancer cells publication-title: PLoS One – volume: 3 start-page: 8088 issue: 41 year: 2015 end-page: 8101 article-title: Multifunctional REDV‐conjugated zwitterionic polycarboxybetaine‐polycaprolactone hybrid surfaces for enhanced antibacterial activity, anti‐thrombogenicity and endothelial cell proliferation publication-title: J Mater Chem B – volume: 9 start-page: 3477 issue: 1 year: 2019 article-title: Development of thermo‐responsive polycaprolactone macrocarriers conjugated with poly(N‐isopropyl acrylamide) for cell culture publication-title: Sci Rep – volume: 122 start-page: 10 year: 2017 end-page: 22 article-title: Targeting NF‐kB signaling with polymeric hybrid micelles that co‐deliver siRNA and dexamethasone for arthritis therapy publication-title: Biomaterials – volume: 9 year: 2022 article-title: Nature‐derived and synthetic additives to poly(ɛ‐caprolactone) nanofibrous Systems for Biomedicine; an updated overview publication-title: Front Chem – volume: 17 start-page: 585 issue: 6 year: 2010 end-page: 594 article-title: Development of nanoparticles for antimicrobial drug delivery publication-title: Curr Med Chem – year: 2013 – volume: 2 start-page: 288 issue: 1 year: 2001 end-page: 294 article-title: Mechanisms and kinetics of thermal degradation of poly(ε‐caprolactone) publication-title: Biomacromolecules – volume: 11 start-page: 903 issue: 4 year: 2021 end-page: 924 article-title: Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers publication-title: Acta Pharmaceutica Sinica B – volume: 2 start-page: 14 issue: 3 year: 2007 end-page: 21 article-title: Targeted nanoparticles for cancer therapy publication-title: Nano Today – year: 2009 – volume: 3 start-page: 494 year: 2013 end-page: 502 article-title: Laminin functionalized biomimetic nanofibers for nerve tissue engineering publication-title: J Biomater Tiss Eng – volume: 10 start-page: 381 year: 2020 end-page: 388 article-title: Polycaprolactone as biomaterial for bone scaffolds: review of literature publication-title: Craniofac Res Found – volume: 13 start-page: 191 issue: 2 year: 2021 article-title: Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines publication-title: Pharmaceutics – volume: 20 start-page: 437 issue: 2 year: 2009 end-page: 446 article-title: Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts publication-title: J Mater Sci Mater Med – volume: 4 start-page: 11089 issue: 22 year: 2014 end-page: 11098 article-title: Synthesis and characterization of S‐PCL‐PDMAEMA for co‐delivery of pDNA and DOX publication-title: RSC Adv – volume: 19 year: 2019 article-title: Active targeting drug delivery nanocarriers: ligands publication-title: Nano‐Struct Nano‐Obj – volume: 9 Suppl 1 start-page: S113 year: 2003 end-page: S126 article-title: Repair of calvarial defects with customized tissue‐engineered bone grafts. I. Evaluation of osteogenesis in a three‐dimensional culture system publication-title: Tissue Eng – volume: 11 issue: 5 year: 2016 article-title: Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers publication-title: PLoS One – volume: 107 start-page: 863 issue: 3 year: 2018 end-page: 869 article-title: Sustained simultaneous delivery of metronidazole and doxycycline from polycaprolactone matrices designed for intravaginal treatment of pelvic inflammatory disease publication-title: J Pharm Sci – volume: 39 start-page: 268 issue: 4 year: 2018 end-page: 278 article-title: A simple method to functionalize PCL surface by grafting bioactive polymers using UV irradiation publication-title: IRBM – volume: 140 start-page: 64 year: 2017 end-page: 73 article-title: A facile strategy for fabricating PCL/PEG block copolymer with excellent enzymatic degradation publication-title: Polym Degrad Stab – volume: 22 start-page: 389 issue: 1–3 year: 2011 end-page: 406 article-title: Heparin‐conjugated PCL scaffolds fabricated by electrospinning and loaded with fibroblast growth factor 2 publication-title: Ann Oncol – volume: 1 start-page: 275 year: 2000 end-page: 281 article-title: A novel route to poly(ε‐caprolactone)‐based copolymers via anionic derivatization publication-title: Biomacromolecules – volume: 63 start-page: 623 issue: 8 year: 2011 end-page: 639 article-title: Extravasation of polymeric nanomedicines across tumor vasculature publication-title: Adv Drug Deliv Rev – volume: 33 start-page: 747 year: 1996 end-page: 758 article-title: Cationic polymerization of 1,5‐dioxepan‐2‐one with Lewis acids in bulk and solution publication-title: J Macromol Sci Pure Appl Chemistry – volume: 20 start-page: 3279 issue: 23–24 year: 2014 end-page: 3289 article-title: In vitro and in vivo studies of BMP‐2‐loaded PCL–gelatin–BCP electrospun scaffolds publication-title: Tissue Eng Part A – volume: 15 start-page: 440 issue: 3 year: 2004 end-page: 449 article-title: Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst‐line treatment of metastatic breast cancer publication-title: Ann of Oncol – volume: 62 start-page: 42 year: 2017 end-page: 63 article-title: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications publication-title: Acta Biomater – volume: 530 start-page: 195 year: 2017 end-page: 200 article-title: Enhancement of nose‐to‐brain delivery of hydrophilic macromolecules with stearate‐or polyethylene glycol‐modified arginine‐rich peptide publication-title: Int J Pharm – volume: 63 start-page: 275 year: 2000 end-page: 286 article-title: Polycaprolactone‐b‐poly (ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone publication-title: J Control Release – volume: 27 start-page: 455 year: 2011 end-page: 467 article-title: Porous alginate/poly(ε‐caprolactone) scaffolds: preparation, characterization and in vitro biological activity publication-title: Int J Mol Med – volume: 32 start-page: 762 year: 2007 end-page: 798 article-title: Biodegradable polymers as biomaterials publication-title: Progr Polym Sci – volume: 52 start-page: 1 year: 2014 end-page: 19 article-title: Zinc complexes with N‐donor ligands and their application as catalysts in the polymerisation of cyclic esters publication-title: Macromolecules – volume: 7 start-page: 17 issue: Suppl. 1 year: 2009 end-page: 20 article-title: Dynamics of platelet thrombus formation publication-title: J Thromb Haemost – volume: 95 start-page: 126 year: 2017 end-page: 131 article-title: sps. lipase mediated poly (ε‐caprolactone) degradation publication-title: Int J Biol Macromol – volume: 1 start-page: 19 year: 2003 end-page: 23 article-title: Synthesis of polycaprolactone by microwave irradiation – an interesting route to synthesize this polymer via green chemistry publication-title: Environ Chem Lett – volume: 26 start-page: 3779 issue: 11 year: 1981 end-page: 3787 article-title: Aliphatic polyesters. I. the degradation of poly(ϵ‐caprolactone) in vivo publication-title: J Appl Polym Sci – volume: 4 start-page: 4667 issue: 15 year: 2012 end-page: 4673 article-title: Diclofenac/biodegradable polymer micelles for ocular applications publication-title: Nanoscale – volume: 22 start-page: 372 issue: 12 year: 2020 article-title: Development and evaluation of polycaprolactone based docetaxel nanoparticle formulation for targeted breast cancer therapy publication-title: J Nanopart Res – volume: 15 start-page: 3 issue: 1 year: 2015 end-page: 13 article-title: Design and fabrication of functional polycaprolactone publication-title: e‐Polymers – volume: 43 start-page: 6622 issue: 17 year: 2019 end-page: 6635 article-title: Diosgenin‐conjugated PCL–MPEG polymeric nanoparticles for the co‐delivery of anticancer drugs: design, optimization, in vitro drug release and evaluation of anticancer activity publication-title: New J Chem – volume: 136 year: 2020 article-title: Alkynyl‐functionalized chain‐extended PCL for coupling to biological molecules publication-title: Eur Polym J – volume: 44 start-page: 1999 year: 2011 end-page: 2005 article-title: Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring‐opening polymerization of δ‐valerolactone and ε‐caprolactone publication-title: Macromolecules – volume: 41 start-page: 1934 year: 2003 end-page: 1941 article-title: Strontium‐based initiator system for ring‐opening polymerization of cyclic esters publication-title: J Polym Sci A Polym Chem – volume: 56 start-page: 209 issue: 2 year: 1997 end-page: 213 article-title: Enzymatic degradation of poly(ε‐caprolactone) film in phosphate buffer solution containing lipases publication-title: Polym Degrad Stab – volume: 163 start-page: 29 year: 2017 end-page: 40 article-title: Smart pH‐sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging publication-title: Colloid Surf B Biointerf – volume: 14 start-page: 648 issue: 9 year: 1993 end-page: 656 article-title: Mechanisms of polymer degradation in implantable devices publication-title: Biomaterials – volume: 4 start-page: 1788 year: 2008 end-page: 1796 article-title: Controlled release of drugs from multi‐component biomaterials publication-title: Acta Biomater – volume: 96 start-page: 1 year: 2019 end-page: 20 article-title: Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment publication-title: Prog Polym Sci – volume: 21 start-page: 2529 year: 2000 end-page: 2543 article-title: Scaffolds in tissue engineering bone and cartilage publication-title: Biomaterials – volume: 116 start-page: 2658 year: 2010 end-page: 2667 article-title: Crystallization behavior of poly(ε‐caprolactone)/layered double hydroxide nanocomposites publication-title: J Appl Polym Sci – volume: 12 start-page: 251 year: 2001 end-page: 257 article-title: Cationic lipid polymerization as a novel approach for constructing new DNA delivery agents publication-title: Bioconjug Chem – volume: 278 start-page: 1 issue: 1 year: 2004 end-page: 23 article-title: Poly‐ϵ‐caprolactone microspheres and nanospheres: an overview publication-title: Int J Pharm – year: 2023 article-title: Biodegradable polymers for micro elastofluidics publication-title: Small – volume: 24 start-page: 6279 year: 2005 end-page: 6282 article-title: An aluminum complex supported by a fluorous diamino‐dialkoxide ligand for the highly productive ring‐opening polymerization of ε‐caprolactone publication-title: Organometallics – volume: 41 start-page: 638 issue: 6 year: 2014 end-page: 646 article-title: Bio‐conjugated polycaprolactone membranes: a novel wound dressing publication-title: Arch Plast Surg – volume: 25 start-page: 2285 year: 1992 end-page: 2289 article-title: Anionic polymerization of lactones. 14. Anionic block copolymerization of δ‐valerolactone and L‐lactide initiated with potassium methoxide publication-title: Macromolecules – volume: 20 start-page: 71 year: 2002 end-page: 75 article-title: Poly (ε‐caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent publication-title: Mater Sci Eng C – volume: 18 start-page: 865 issue: 3 year: 2017 end-page: 876 article-title: Annexin V‐conjugated mixed micelles as a potential drug delivery system for targeted thrombolysis publication-title: Biomacromolecules – volume: 13: year: 2021 article-title: Cefotaxime loaded polycaprolactone based polymeric nanoparticles with antifouling properties for in‐vitro drug release applications publication-title: Polymers (Basel) – volume: 24 start-page: 3815 year: 2003 end-page: 3824 article-title: Osteoblast growth and function in porous poly epsilon‐caprolactone matrices for bone repair: a preliminary study publication-title: Biomaterials – volume: 66 start-page: 886 issue: 7–8 year: 2006 end-page: 894 article-title: Poly(ε‐caprolactone)‐based nanocomposites: influence of compatibilization on properties of poly(ε‐caprolactone)–silica nanocomposites publication-title: Compos Sci Technol – volume: 58 year: 2006 article-title: Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report publication-title: Neurosurgery – volume: 10 start-page: 6047 year: 2019 end-page: 6061 article-title: Studying the catalytic activity of DBU and TBD upon water‐initiated ROP of ϵ‐caprolactone under different thermodynamic conditions publication-title: Polym Chem – volume: 32 start-page: 4283 issue: 18 year: 2011 end-page: 4292 article-title: Ternary complexes of amphiphilic polycaprolactone‐graft‐poly (N,N‐dimethylaminoethyl methacrylate), DNA and polyglutamic acid‐graft‐poly(ethylene glycol) for gene delivery publication-title: Biomaterials – volume: 17 start-page: 599 issue: 4 year: 2017 end-page: 607 article-title: Y‐shaped folic acid‐conjugated PEG‐PCL copolymeric micelles for delivery of curcumin publication-title: ACAMC – volume: 6 issue: 5 year: 2014 article-title: Molecular structure, function, and dynamics of clathrin‐mediated membrane traffic publication-title: Cold Spring Harb Perspect Biol – volume: 29 start-page: 427 issue: 4 year: 2011 end-page: 430 article-title: Folate‐targeted optical and magnetic resonance dualmodality PCL‐b‐PEG micelles for tumor imaging publication-title: Chin J Polym Sci – start-page: 388 year: 2017 end-page: 415 – volume: 143 start-page: 68 year: 2019 end-page: 96 article-title: Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine publication-title: Adv Drug Deliv Rev – volume: 48 start-page: 416 issue: 3 year: 2013 end-page: 427 article-title: A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics publication-title: Eur J Pharm Sci – volume: 54 start-page: 4333 year: 2013 end-page: 4350 article-title: The contemporary role of ε‐caprolactone chemistry to create advanced polymer architectures publication-title: Polymer – volume: 29 start-page: 790 issue: 8 year: 2006 end-page: 799 article-title: PCL‐PGLA composite tubular scaffold preparation and biocompatibility investigation publication-title: Int J Artif Organs – volume: 24 start-page: 179 issue: 3 year: 2016 end-page: 191 article-title: Nanocarriers for cancer‐targeted drug delivery publication-title: J Drug Target – volume: 9 start-page: 7746 year: 2013 end-page: 7757 article-title: Polycation‐detachable nanoparticles self‐assembled from mPEG‐PCL‐g‐SS‐PDMAEMA for in vitro and in vivo siRNA delivery publication-title: Acta Biomater – volume: 103 year: 2019 article-title: Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease publication-title: Mater Sci Eng C – volume: 8 start-page: 156 year: 2020 article-title: Ditelluride‐bridged PEG‐PCL copolymer as folic acid‐targeted and redox‐responsive nanoparticles for enhanced cancer therapy publication-title: Front Chem – volume: 74 start-page: 141 year: 2006 end-page: 147 article-title: A biodegradable levonorgest relreleasing implant made of PCL/F68 compound as tested in rats and dogs publication-title: Contraception – volume: 567 year: 2019 article-title: Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(ε‐caprolactone) publication-title: Int J Pharm – volume: 10 start-page: 4763 year: 2015 end-page: 4781 article-title: Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization publication-title: IJN – volume: 118 start-page: 2563 issue: 24 year: 2008 end-page: 2570 article-title: Degradation and healing characteristics of small‐diameter poly(ε‐caprolactone) vascular grafts in the rat systemic arterial circulation publication-title: Circulation – volume: 113 year: 2020 article-title: Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery publication-title: Mater Sci Eng C – volume: 46 start-page: 5909 year: 2005 end-page: 5917 article-title: Catalysts for the ring‐opening polymerization of ε‐caprolactone and L‐lactide and the mechanistic study publication-title: Polymer – ident: e_1_2_9_171_1 – volume: 46 start-page: 6387 year: 1986 ident: e_1_2_9_88_1 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res – ident: e_1_2_9_123_1 doi: 10.1016/j.carbpol.2013.09.053 – ident: e_1_2_9_54_1 doi: 10.1002/app.1976.070201104 – ident: e_1_2_9_168_1 doi: 10.1016/j.actbio.2008.05.021 – ident: e_1_2_9_154_1 – ident: e_1_2_9_74_1 doi: 10.1016/j.ijpharm.2019.118461 – ident: e_1_2_9_97_1 doi: 10.1163/092050610X487710 – ident: e_1_2_9_99_1 doi: 10.1371/journal.pone.0112200 – ident: e_1_2_9_90_1 doi: 10.1007/s10118‐011‐1057‐3 – ident: e_1_2_9_103_1 doi: 10.1089/ten.tea.2014.0081 – ident: e_1_2_9_65_1 doi: 10.3389/fchem.2021.809676 – ident: e_1_2_9_145_1 doi: 10.1016/j.msec.2019.109798 – ident: e_1_2_9_155_1 – ident: e_1_2_9_127_1 doi: 10.1039/C3RA46914J – ident: e_1_2_9_110_1 doi: 10.2147/IJN.S170067 – ident: e_1_2_9_40_1 doi: 10.1016/S0141‐3910(96)00208‐X – ident: e_1_2_9_153_1 – ident: e_1_2_9_29_1 doi: 10.1016/j.polymer.2005.04.079 – ident: e_1_2_9_156_1 – ident: e_1_2_9_78_1 doi: 10.1016/S1748‐0132(07)70083‐X – ident: e_1_2_9_164_1 doi: 10.1002/jbm.a.30458 – ident: e_1_2_9_18_1 doi: 10.1002/app.31787 – volume-title: Handbook of Polymer Synthesis, Characterization, and Processing year: 2013 ident: e_1_2_9_25_1 – ident: e_1_2_9_81_1 doi: 10.1155/2016/7818501 – ident: e_1_2_9_118_1 doi: 10.3390/molecules24203744 – ident: e_1_2_9_69_1 doi: 10.1007/978‐1‐4939‐2272‐7_3 – ident: e_1_2_9_77_1 doi: 10.1016/j.ejps.2012.12.006 – ident: e_1_2_9_53_1 doi: 10.1039/c39840001505 – ident: e_1_2_9_47_1 doi: 10.1016/j.ijpharm.2004.01.044 – ident: e_1_2_9_12_1 doi: 10.1016/j.actbio.2013.04.031 – ident: e_1_2_9_125_1 doi: 10.1016/j.biomaterials.2011.02.034 – ident: e_1_2_9_137_1 doi: 10.1016/j.biomaterials.2017.01.008 – ident: e_1_2_9_22_1 doi: 10.1002/9783527628407 – ident: e_1_2_9_86_1 doi: 10.1080/713773924 – ident: e_1_2_9_3_1 doi: 10.1016/j.jconrel.2011.09.064 – ident: e_1_2_9_112_1 doi: 10.1016/j.ijpharm.2019.05.047 – ident: e_1_2_9_7_1 doi: 10.1016/j.actbio.2017.07.028 – ident: e_1_2_9_44_1 doi: 10.1177/039139880602900809 – ident: e_1_2_9_106_1 doi: 10.1186/s40824‐018‐0126‐x – ident: e_1_2_9_76_1 doi: 10.1016/j.ejpb.2011.08.004 – ident: e_1_2_9_166_1 doi: 10.1016/j.ijpharm.2003.08.011 – ident: e_1_2_9_143_1 doi: 10.1016/j.ijporl.2015.05.037 – ident: e_1_2_9_161_1 doi: 10.1016/S0079-6700(01)00039-9 – ident: e_1_2_9_17_1 doi: 10.1016/S0002‐9378(89)80015‐8 – ident: e_1_2_9_8_1 doi: 10.1016/S0168‐3659(99)00200‐X – ident: e_1_2_9_132_1 doi: 10.1021/acs.biomac.5b01422 – ident: e_1_2_9_100_1 doi: 10.1586/erc.12.41 – ident: e_1_2_9_122_1 doi: 10.1016/j.biomaterials.2008.09.025 – ident: e_1_2_9_57_1 doi: 10.1016/j.compscitech.2005.08.014 – ident: e_1_2_9_32_1 doi: 10.1021/ma0484072 – ident: e_1_2_9_157_1 – ident: e_1_2_9_31_1 doi: 10.1021/om050512s – ident: e_1_2_9_75_1 doi: 10.1016/j.nanoso.2019.100370 – ident: e_1_2_9_20_1 doi: 10.1021/bm005521t – ident: e_1_2_9_10_1 doi: 10.1021/bc000097e – ident: e_1_2_9_21_1 doi: 10.1080/10601329608010891 – ident: e_1_2_9_126_1 doi: 10.1016/j.jconrel.2017.05.028 – ident: e_1_2_9_151_1 – ident: e_1_2_9_45_1 doi: 10.3892/ijmm.2010.593 – ident: e_1_2_9_92_1 doi: 10.1515/epoly‐2014‐0158 – ident: e_1_2_9_62_1 doi: 10.1016/j.enzmictec.2004.05.005 – ident: e_1_2_9_170_1 doi: 10.1089/10763270360697021 – ident: e_1_2_9_163_1 doi: 10.1016/S0142-9612(03)00263-1 – ident: e_1_2_9_9_1 doi: 10.1016/j.msec.2020.110913 – ident: e_1_2_9_121_1 doi: 10.1016/j.biomaterials.2006.09.028 – ident: e_1_2_9_59_1 doi: 10.1166/mex.2020.1702 – ident: e_1_2_9_134_1 doi: 10.1016/j.xphs.2017.09.033 – ident: e_1_2_9_129_1 doi: 10.1002/smll.202303435 – ident: e_1_2_9_120_1 doi: 10.1002/jbm.b.33519 – ident: e_1_2_9_49_1 doi: 10.1161/CIRCULATIONAHA.108.795732 – ident: e_1_2_9_51_1 doi: 10.1016/0142‐9612(93)90063‐8 – ident: e_1_2_9_95_1 doi: 10.1021/acs.jchemed.0c00325 – ident: e_1_2_9_34_1 doi: 10.1021/ma200043x – ident: e_1_2_9_85_1 doi: 10.1021/acs.bioconjchem.6b00437 – ident: e_1_2_9_111_1 doi: 10.1016/j.ejps.2017.06.038 – ident: e_1_2_9_14_1 doi: 10.1016/j.ijpharm.2017.07.077 – volume: 34 start-page: 123 year: 2013 ident: e_1_2_9_48_1 article-title: Biodegradable poly‐epsilon‐caprolactone (PCL) for tissue engineering applications: a review publication-title: Rev Adv Mater Sci – year: 2002 ident: e_1_2_9_26_1 article-title: Polycaprolactone: synthesis, properties, and applications publication-title: Encyclo Polym Sci Technol – ident: e_1_2_9_87_1 doi: 10.1016/j.addr.2010.11.005 – ident: e_1_2_9_63_1 doi: 10.1295/polymj.33.38 – ident: e_1_2_9_71_1 doi: 10.3390/ma13020366 – ident: e_1_2_9_39_1 doi: 10.1371/journal.pone.0154806 – ident: e_1_2_9_130_1 doi: 10.1007/s00396‐016‐3968‐6 – ident: e_1_2_9_141_1 doi: 10.3390/polym13132180 – ident: e_1_2_9_160_1 doi: 10.1016/S0142-9612(00)00121-6 – ident: e_1_2_9_15_1 doi: 10.1089/ten.tea.2008.0473 – ident: e_1_2_9_135_1 doi: 10.1016/j.jddst.2015.07.009 – ident: e_1_2_9_50_1 doi: 10.1016/j.progpolymsci.2019.05.004 – ident: e_1_2_9_114_1 doi: 10.1016/j.colsurfb.2017.12.008 – volume: 10 start-page: 2971 year: 2015 ident: e_1_2_9_144_1 article-title: Chloramphenicol encapsulated in poly‐ε‐caprolactone‐pluronic composite: nanoparticles for treatment of MRSA‐infected burn wounds publication-title: Int J Nanomedicine – ident: e_1_2_9_37_1 doi: 10.1016/S0378-5173(02)00483-0 – ident: e_1_2_9_56_1 – ident: e_1_2_9_83_1 doi: 10.1016/j.biomaterials.2008.10.035 – ident: e_1_2_9_30_1 doi: 10.1002/pola.10740 – ident: e_1_2_9_105_1 doi: 10.1039/C5TB01598G – ident: e_1_2_9_115_1 – ident: e_1_2_9_146_1 doi: 10.1021/acs.iecr.6b02300 – ident: e_1_2_9_117_1 doi: 10.1042/bst0270873 – ident: e_1_2_9_27_1 doi: 10.1007/s10311‐002‐0005‐4 – ident: e_1_2_9_28_1 doi: 10.1021/bm034208z – ident: e_1_2_9_138_1 doi: 10.1039/c2nr30924f – ident: e_1_2_9_16_1 doi: 10.1166/jbt.2013.1110 – ident: e_1_2_9_91_1 doi: 10.1007/s11051‐020‐05096‐y – ident: e_1_2_9_6_1 doi: 10.1016/j.progpolymsci.2010.04.002 – ident: e_1_2_9_147_1 – ident: e_1_2_9_13_1 doi: 10.1021/bc9005267 – ident: e_1_2_9_58_1 doi: 10.1016/j.ijbiomac.2016.11.040 – ident: e_1_2_9_80_1 doi: 10.3389/fchem.2020.00156 – ident: e_1_2_9_24_1 doi: 10.1021/ma00035a001 – ident: e_1_2_9_98_1 doi: 10.1038/s41598‐019‐40242‐0 – ident: e_1_2_9_108_1 doi: 10.1111/j.1538-7836.2009.03401.x – ident: e_1_2_9_68_1 doi: 10.1016/j.addr.2019.04.008 – ident: e_1_2_9_150_1 – ident: e_1_2_9_109_1 doi: 10.1021/acs.biomac.6b01756 – ident: e_1_2_9_72_1 doi: 10.1101/cshperspect.a016725 – ident: e_1_2_9_42_1 doi: 10.1016/B978‐0‐12‐409547‐2.12329‐7 – ident: e_1_2_9_43_1 doi: 10.1080/10601325.2020.1831392 – ident: e_1_2_9_23_1 doi: 10.1016/j.polymer.2013.04.045 – ident: e_1_2_9_2_1 doi: 10.1039/b820162p – ident: e_1_2_9_82_1 doi: 10.1089/ten.tea.2009.0680 – ident: e_1_2_9_131_1 doi: 10.1039/C5RA24942B – ident: e_1_2_9_128_1 doi: 10.3109/1061186X.2015.1051049 – ident: e_1_2_9_41_1 doi: 10.1007/s10856‐008‐3581‐4 – ident: e_1_2_9_93_1 doi: 10.1016/j.eurpolymj.2020.109908 – ident: e_1_2_9_167_1 doi: 10.1016/j.contraception.2006.02.013 – ident: e_1_2_9_165_1 doi: 10.1248/cpb.52.976 – ident: e_1_2_9_73_1 doi: 10.3390/pharmaceutics13020191 – ident: e_1_2_9_119_1 doi: 10.1002/mame.201800255 – ident: e_1_2_9_89_1 doi: 10.1093/annonc/mdh097 – ident: e_1_2_9_158_1 doi: 10.1016/S0079-6700(97)00039-7 – ident: e_1_2_9_169_1 doi: 10.1227/01.NEU.0000193533.54580.3F – ident: e_1_2_9_148_1 – ident: e_1_2_9_38_1 doi: 10.2147/IJN.S75101 – ident: e_1_2_9_107_1 doi: 10.1021/ar2000138 – ident: e_1_2_9_66_1 doi: 10.1002/app.1981.070261124 – ident: e_1_2_9_101_1 doi: 10.1039/C9NJ00659A – ident: e_1_2_9_104_1 doi: 10.5999/aps.2014.41.6.638 – ident: e_1_2_9_55_1 doi: 10.1021/bm0056310 – ident: e_1_2_9_152_1 – ident: e_1_2_9_33_1 doi: 10.1039/c9py01134j – ident: e_1_2_9_149_1 – ident: e_1_2_9_174_1 doi: 10.1088/1748-6041/6/2/025003 – ident: e_1_2_9_70_1 doi: 10.1016/j.nantod.2011.02.003 – ident: e_1_2_9_60_1 doi: 10.1007/s10924‐020‐01826‐4 – ident: e_1_2_9_36_1 doi: 10.1016/j.jconrel.2011.09.064 – ident: e_1_2_9_162_1 doi: 10.1016/S0928-4931(02)00015-2 – ident: e_1_2_9_4_1 doi: 10.1080/00914037.2015.1103241 – ident: e_1_2_9_5_1 doi: 10.1016/j.jobcr.2019.10.003 – ident: e_1_2_9_124_1 doi: 10.1016/j.biomaterials.2012.05.055 – ident: e_1_2_9_11_1 doi: 10.1021/ja404491r – ident: e_1_2_9_94_1 doi: 10.1021/acs.macromol.1c02325 – ident: e_1_2_9_19_1 doi: 10.1016/j.eurpolymj.2014 – ident: e_1_2_9_136_1 doi: 10.1080/10837450.2018.1556689 – ident: e_1_2_9_52_1 doi: 10.1002/jbm.820190408 – ident: e_1_2_9_116_1 doi: 10.1039/C6PY01838F – ident: e_1_2_9_133_1 doi: 10.1080/09205063.2017.1394711 – ident: e_1_2_9_140_1 doi: 10.2174/092986710790416290 – ident: e_1_2_9_79_1 doi: 10.2174/1871520616666160815124014 – ident: e_1_2_9_35_1 doi: 10.1016/j.biomaterials.2005.09.019 – ident: e_1_2_9_172_1 doi: 10.1016/j.contraception.2006.02.013 – ident: e_1_2_9_61_1 doi: 10.1016/S0009‐2509(03)00155‐6 – ident: e_1_2_9_159_1 doi: 10.1016/j.progpolymsci.2007.05.017 – ident: e_1_2_9_64_1 doi: 10.1016/j.polymdegradstab.2017.04.015 – volume: 70 start-page: 669 issue: 7 year: 1996 ident: e_1_2_9_84_1 article-title: Poly(ε‐caprolactone) microspheres as a vaccine carrier publication-title: Curr Sci – ident: e_1_2_9_102_1 doi: 10.2147/IJN.S39532 – ident: e_1_2_9_113_1 doi: 10.1016/j.ijpharm.2020.119091 – ident: e_1_2_9_46_1 doi: 10.1016/j.actbio.2011.10.009 – ident: e_1_2_9_142_1 doi: 10.1039/C6TB01623E – ident: e_1_2_9_139_1 doi: 10.1007/s11095-017-2166-7 – ident: e_1_2_9_67_1 doi: 10.1016/j.apsb.2021.02.019 – ident: e_1_2_9_96_1 doi: 10.1016/j.irbm.2018.07.002 – ident: e_1_2_9_173_1 doi: 10.1016/j.ijpharm.2009.12.010 |
SSID | ssj0009997 |
Score | 2.5616133 |
SecondaryResourceType | review_article |
Snippet | Polycaprolactone (PCL) is polymer of 21st centuries. PCL is a biodegradable and biocompatible polymer used for various healthcare applications. This review... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3296 |
SubjectTerms | Biocompatibility biocompatible polymer biodegradable polymer Biomedical materials Health care healthcare applications Microparticles Nanoparticles PCL‐based materials Polycaprolactone Polymers Surgical implants Tissue engineering Wound healing |
Title | Polycaprolactone and its derivatives for drug delivery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpat.6140 https://www.proquest.com/docview/2860555908 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kL-qDH1NxOqWC6FO3fiRp-ziGYwjKkA0GPpQ0yUQs3Vg7Yf71XvqxTVEQnwrNHVwvudwv5fI7gGuLS6YCLk1LKmYS3AFNTkRgUpdyogQR9kRfcH54ZP0RuR_TcVlVqe_CFPwQqx9uOjLy_VoHOI_S9po0dMazFuYWfVzXpVoaDz2tmaMQ93gFEQECSJt4Fe-s5bQrxa-ZaA0vN0FqnmV6-_Bc2VcUl7y1FlnUEh_fqBv_9wEHsFeCT6NTrJZD2FJJHba7Vc-3Ouxu0BMeARtM46XgaEysu_IkyuCJNF6z1JAo8Z5ThqcGol5Dzhcv-DLWRR7LYxj17obdvln2WTAFJnvLFIwKGgk3kj6dEGYrwhS6LPA4jngEBwM7CCLlSU84jlJ0YmNWR2TgUOlwJt0TqCVoxCkYOBERHuBcy8d5tojNURfTn1SSc5e4ogG3lc9DUZKQ614YcVjQJzsheiXUXmnA1UpyVhBv_CDTrKYtLEMvDR2faRKzwPIbcJP7_1f9cNAZ6ufZXwXPYUe3my-K-ZpQy-YLdYGgJIsu8-X3Ccad3ZU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSwJBEB_EHqyHPqzIsrog6un0Pnb3PHoSSaxUJBR8CI693TUiMdEzsL--2TtPLQqip4PdWZib3dn57TL7G4BLi0umfC5NSypmEtwBTU6Eb1KXcqIEEfZAP3ButVmjR-77tJ-Bm_QtTMIPsbxw054R79fawfWFdHnFGjrmUQmDC57XN3RB7_g89bjijkLk4yVUBAghbeKlzLOWU05Hfo1FK4C5DlPjOFPfgadUwyS95LU0i8KS-PhG3vjPX9iF7QX-NKrJgtmDjBrlIVdLy77lYWuNoXAfWOdtOBcctRnqwjwjZfCRNF6iqSFR4j1mDZ8aCHwNOZk9Y-NQ53nMD6BXv-3WGuai1IIpMN5bpmBU0FC4oazQAWG2IkyhzXyPY49HsNO3fT9UnvSE4yhFBzYGdgQHDpUOZ9I9hOwIlTgCw2U0xDOca1Vwqi1icxyLEVAqyblLXFGA69TogVjwkOtyGMMgYVB2ArRKoK1SgIul5Djh3vhBppjOW7DwvmngVJjmMfOtSgGu4gn4dXzQqXb19_ivgueQa3RbzaB51344gU1dfT7J7StCNprM1ClilCg8i9fiJ6a14bA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED9kgo8PvsXp1Aqinzr7SNL249gc88kQBcEPJU1SEUsdrhPmX--lj01FQfxUaO4gvdzlfimX3wEcWlwyFXBpWlIxk-AOaHIiApO6lBMliLBjfcH56pr17sj5Pb0vqyr1XZiCH2Lyw01HRr5f6wAfyPhkSho64FkTcwse12cJs3zt0Z2bKXUUAh-vYCJABGkTryKetZyTSvNrKpriy88oNU8z3WV4qCZYVJc8N0dZ1BTv37gb__cFK7BUok-jVbjLKsyodA3m21XTtzVY_MRPuA6s_5KMBcfJJLotT6oMnkrjKRsaEiXecs7woYGw15Cvo0d8megqj_EG3HVPb9s9s2y0YArM9pYpGBU0Em4kfRoTZivCFJos8DiOeAQHAzsIIuVJTziOUjS2Ma0jNHCodDiT7ibUUpzEFhguoxGe4FzLx4W2iM1RF_OfVJJzl7iiDseVzUNRspDrZhhJWPAnOyFaJdRWqcPBRHJQMG_8INOoli0sY28YOj7TLGaB5dfhKLf_r_phv3Wrn9t_FdyHuX6nG16eXV_swIJuPV8U9jWglr2O1C4ClCzayz3xAza94Gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycaprolactone+and+its+derivatives+for+drug+delivery&rft.jtitle=Polymers+for+advanced+technologies&rft.au=Pawar%2C+Ranjitsinh&rft.au=Pathan%2C+Anam&rft.au=Nagaraj%2C+Srishti&rft.au=Kapare%2C+Harshad&rft.date=2023-10-01&rft.issn=1042-7147&rft.eissn=1099-1581&rft.volume=34&rft.issue=10&rft.spage=3296&rft.epage=3316&rft_id=info:doi/10.1002%2Fpat.6140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pat_6140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-7147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-7147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-7147&client=summon |