A multi-constituent model for assessing the effect of impeller shroud on the thrombosis potential of a centrifugal blood pump
Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis...
Saved in:
Published in | International journal of artificial organs Vol. 47; no. 4; p. 269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons. |
---|---|
ISSN: | 1724-6040 |
DOI: | 10.1177/03913988241239456 |