Is Anoxic Operation Effective to Control Nitrate Build-Up and Sludge Loss for the Combined Partial Nitritation and Anammox (CPNA) Process?
There were three main issues of long start-up period, nitrate build-up and sludge loss during the operation of combined partial-nitritation anammox (CPNA). To fully start up the CPNA reactor, the fast achievement of partial-nitritation (PN) was the first step. Firstly, the PN process was successfull...
Saved in:
Published in | Processes Vol. 8; no. 9; p. 1053 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There were three main issues of long start-up period, nitrate build-up and sludge loss during the operation of combined partial-nitritation anammox (CPNA). To fully start up the CPNA reactor, the fast achievement of partial-nitritation (PN) was the first step. Firstly, the PN process was successfully achieved within 22 days by 2 mg·L−1 hydroxylamine (NH2OH) addition and online intermittent aeration control at 0.2~0.3 mg·L−1 dissolved oxygen (DO). Then, a novel strategy of adding anoxic stirring phase between feeding and aeration period during CPNA operation was applied. It was shown effective to control nitrate build-up since the mole ratio of NO3−-N production and NH4+-N removed (MNRR) was mostly below 15%. Also, the procedure adjustment was proven useful to alleviate sludge loss by sustaining filamentous bacteria that could act as biomass framework and reduce nitrate substrate. The filamentous denitrifying bacteria could cause sludge bulking. The total nitrogen removal rate (TNRR) varied from 0.20 to 0.45 kg·m−3·d−1 during CPNA operation. In Stage III, after adding anoxic stirring phase, the abundance of nitrogen transformation functional microorganism’s nitrite oxidizing bacteria (NOB) was below 1.6%, which was one order of magnitude lower than Anammox and ammonia oxidizing bacteria (AOB). |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr8091053 |