Scaling laws for natural convection boundary layer of a Pr > 1 fluid on a vertical solid surface subject to a sinusoidal temperature in a linearly-stratified ambient fluid

The understanding of the transient behavior of natural convection boundary layer (NCBL) on a heated vertical solid surface under various heating conditions is of fundamental significance and application importance. In this study, scalings for the parameters representing the behavior of unsteady NCBL...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 36; no. 1
Main Authors Armfield, S. W., Khatamifar, Mehdi
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The understanding of the transient behavior of natural convection boundary layer (NCBL) on a heated vertical solid surface under various heating conditions is of fundamental significance and application importance. In this study, scalings for the parameters representing the behavior of unsteady NCBL flow of a linearly-stratified Pr > 1 fluid on a semi-infinite vertical solid surface heated with a time-varying sinusoidal temperature at different development stages are developed with a scaling analysis, in terms of Ra, Pr, s, and fn, which are the Rayleigh number, Prandtl number, stratification number, and frequency of the sinusoidal temperature, respectively. These scalings are validated and quantified with a series of numerical simulations over wide ranges of Ra, Pr, s, and fn. The frequency of the fluctuations experienced by the NCBL behavior at the transitional stage, due to the stratification of the ambient fluid, is also analyzed, and it is shown that the previously obtained scaling for the unsteady NCBL case with the constant heat flux heating condition is basically applicable for the current case, Ra and fn have additional effects as well due to the time-varying nature of the applied temperature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0191550