STAR-RIS Aided Secure MIMO Communication Systems

This paper investigates simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) aided physical layer security (PLS) in multiple-input multiple-output (MIMO) systems, where the base station (BS) transmits secrecy information with the aid of STAR-RIS against multiple eav...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 73; no. 10; pp. 15715 - 15720
Main Authors Dong, Xiequn, Fei, Zesong, Wang, Xinyi, Hua, Meng, Wu, Qingqing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) aided physical layer security (PLS) in multiple-input multiple-output (MIMO) systems, where the base station (BS) transmits secrecy information with the aid of STAR-RIS against multiple eavesdroppers equipped with multiple antennas. We aim to maximize the secrecy rate by jointly optimizing the active beamforming at the BS and passive beamforming at the STAR-RIS, subject to the hardware constraint for STAR-RIS. To handle the coupling variables, a minimum mean-square error (MMSE) based alternating optimization (AO) algorithm is applied. In particular, the amplitudes and phases of STAR-RIS are divided into two blocks to simplify the algorithm design. Besides, by applying the Majorization-Minimization (MM) method, we derive a closed-form expression of the STAR-RIS's phase shifts. Numerical results show that the proposed scheme significantly outperforms various benchmark schemes, especially as the number of STAR-RIS elements increases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2024.3400277