Artificial Noise and RIS-Aided Physical Layer Security: Optimal RIS Partitioning and Power Control
The synergism of reconfigurable intelligent surfaces (RIS) and artificial noise (AN) shows significant promise in improving physical layer security in wireless networks. Accordingly, this letter proposes the virtual partitioning of RIS elements into two parts such that the phase shifts of the differ...
Saved in:
Published in | IEEE wireless communications letters Vol. 12; no. 6; pp. 992 - 996 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The synergism of reconfigurable intelligent surfaces (RIS) and artificial noise (AN) shows significant promise in improving physical layer security in wireless networks. Accordingly, this letter proposes the virtual partitioning of RIS elements into two parts such that the phase shifts of the different partitions are configured to improve the intended signal at a legitimate user and enhance the impact of AN on an illegitimate user, respectively. To this aim, two problems are defined to jointly optimize the partitioning ratio, and signal/noise transmit power levels for two main objectives. First, we maximize secrecy capacity by satisfying users' quality of service (QoS). Second, we optimize transmit power to establish a secure link by satisfying the QoS of the legitimate user. We provide closed-form solutions subject to the rate constraints on both legitimate and illegitimate users. Simulation results validate the closed-from solutions and show that the proposed RIS-partitioning method dramatically improves SC compared to benchmark methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2023.3256001 |