Optimized-Sector-Based Model Predictive Torque Control With Sliding Mode Controller for Switched Reluctance Motor
In this paper, an optimized-sector-based model predictive torque control (OSB-MPTC) strategy is proposed to reduce the torque ripple of the switched reluctance motors (SRMs). First, a phase torque estimation method based on the magnetic coenergy and Fourier series expansion is introduced. A new sect...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 39; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, an optimized-sector-based model predictive torque control (OSB-MPTC) strategy is proposed to reduce the torque ripple of the switched reluctance motors (SRMs). First, a phase torque estimation method based on the magnetic coenergy and Fourier series expansion is introduced. A new sector division rule and a selection of the basic voltage vector in predicting torque are then introduced. The cost function for minimizing torque error is designed to select the optimal voltage vector. In addition, a new reaching law is proposed to improve the robustness of the control system and the dynamic response of the speed loop. Finally, experiments are carried out on a 12/8 pole three-phase SRM prototype to verify the performance of the proposed control method in detail. Compared with the conventional model predictive control, the proposed OSB-MPTC with global robust sliding mode control has better performance in terms of suppression of the torque ripple, speed dynamic response, and robustness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2023.3301000 |