Efficient deep red/near-infrared thermally activated delayed fluorescence emitters via molecular reconstruction: theoretical insights
Thermally activated delayed fluorescence (TADF) molecules with deep-red (DR) and near-infrared (NIR) luminescence show great potential in biomedical sensing/imaging and telecommunications. However, developing efficient DR- and NIR-TADF molecules remains a powerful challenge, and new design strategie...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 43; pp. 26764 - 26775 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
09.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thermally activated delayed fluorescence (TADF) molecules with deep-red (DR) and near-infrared (NIR) luminescence show great potential in biomedical sensing/imaging and telecommunications. However, developing efficient DR- and NIR-TADF molecules remains a powerful challenge, and new design strategies are highly desired. Based on 2,3-bis(4-(diphenylamino)phenyl)quinoxaline-5,8-dicarbonitrile (CNQ-TPA), two novel TADF molecules CNQ-b-TPA and CNQ-f-TPA are theoretically constructed through the design strategy of molecular bonding and molecular fusion. The photophysical properties and luminescence mechanisms of the three molecules in toluene and the crystal state are revealed with first-principles calculations and the thermal vibration correlation function (TVCF) method. Compared with CNQ-TPA, CNQ-b-TPA and CNQ-f-TPA can achieve an effective red-shift of intrinsic emission and efficient DR and NIR emission. Remarkably, molecular bonding and molecular fusion not only greatly increase the oscillator strength, but also effectively reduce the energy gap between the first singlet excited state (S
1
) and the first triplet excited state (T
1
), resulting in their high radiative and reverse intersystem crossing rate. Moreover, the charge transport properties are studied based on kinetic Monte Carlo simulations. Molecular bonding to balance charge transport is found, enabling ambipolar transport properties. Our work provides a feasible solution to overcome the design limitations of previous DR- and NIR-TADF materials and predicts good candidates for both DR- and NIR-TADF emitters. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d2cp03697e |