Genetically encoded in situ gelation redox-responsive collagen-like protein hydrogel for accelerating diabetic wound healing
Genetically encoded collagen-like protein-based hydrogels have demonstrated remarkable efficacy in promoting the healing process in diabetic patients. However, the current methods for preparing these hydrogels pose significant challenges due to harsh reaction conditions and the reliance on chemical...
Saved in:
Published in | Biomaterials science Vol. 11; no. 24; pp. 7748 - 7758 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
05.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Genetically encoded collagen-like protein-based hydrogels have demonstrated remarkable efficacy in promoting the healing process in diabetic patients. However, the current methods for preparing these hydrogels pose significant challenges due to harsh reaction conditions and the reliance on chemical crosslinkers. In this study, we present a genetically encoded approach that allows for the creation of protein hydrogels without the need for chemical additives. Our design involves the genetic encoding of paired-cysteine residues at the C- and N-terminals of a meticulously engineered collagen-like recombination protein. The protein-based hydrogel undergoes a gel–sol transition in response to redox stimulation, achieving a gel–sol transition. We provide evidence that the co-incubation of the protein hydrogel with 3T3 cells not only enhances cell viability but also promotes cell migration. Moreover, the application of the protein hydrogel significantly accelerates the healing of diabetic wounds by upregulating the expression of collagen-1α (COL-1α) and Cytokeratin 14 (CK-14), while simultaneously reducing oxidant stress in the wound microenvironment. Our study highlights a straightforward strategy for the preparation of redox-responsive protein hydrogels, removing the need for additional chemical agents. Importantly, our findings underscore the potential of this hydrogel system for effectively treating diabetic wounds, offering a promising avenue for future therapeutic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/d3bm01010d |