The transition of tidal Kelvin waves to hybrid Kelvin edge and internal waves in the global ocean
In this study, we investigate the transition of semidiurnal Kelvin waves into Hybrid Kelvin-Edge (HKE) waves and associated generation of internal tides at widening shelves using theory, a realistic global baroclinic ocean model simulation, and quasi-realistic regional barotropic model simulations....
Saved in:
Published in | Continental shelf research Vol. 241; p. 104734 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, we investigate the transition of semidiurnal Kelvin waves into Hybrid Kelvin-Edge (HKE) waves and associated generation of internal tides at widening shelves using theory, a realistic global baroclinic ocean model simulation, and quasi-realistic regional barotropic model simulations. Using the global model simulation, we identify several areas where a tidal HKE wave transition co-exists with internal wave generation. Of all areas considered, the Celtic Sea/Bay of Biscay shelf has the widest shelf and the strongest internal tide generation. We find that the global simulation agrees better with the theoretical Kelvin modes on the narrow than with the hybrid edge modes on the wide shelves. To help us understand the effect of complex, realistic bathymetry on the HKE wave transition, we perform quasi-realistic 1/25° barotropic simulations of the Celtic Sea/Bay of Biscay shelf areas. In these simulations, we gradually change the realistic bathymetry to a more idealized bathymetry. The idealized simulations show that the complex bathymetry steers the barotropic energy flux and causes standing wave patterns, which mask the HKE wave transition. Based on this analysis, we conclude that the HKE wave transition in the Celtic Sea/Bay of Biscay and other shelf areas in the global ocean is most likely masked by the effects of complex bathymetry and that offshelf baroclinic fluxes cannot be exclusively attributed to the HKE wave transition.
•Investigation of M2 Kelvin waves’ transition into Hybrid Kelvin-Edge waves and the associated generation of internal tides.•Theory, a realistic global baroclinic HYCOM simulation, and quasi-realistic regional barotropic HYCOM simulations are used.•Global analysis indicates potential Hybrid Kelvin-Edge wave transition in the Celtic Sea/Bay of Biscay shelf.•Observation of strong onshore barotropic and offshelf baroclinic energy fluxes in the Celtic Sea/Bay of Biscay shelf.•The complex bathymetry most likely affects the Hybrid Kelvin-Edge wave transition in the global ocean. |
---|---|
ISSN: | 0278-4343 1873-6955 |
DOI: | 10.1016/j.csr.2022.104734 |