GraphCFC: A Directed Graph Based Cross-Modal Feature Complementation Approach for Multimodal Conversational Emotion Recognition

Emotion Recognition in Conversation (ERC) plays a significant part in Human-Computer Interaction (HCI) systems since it can provide empathetic services. Multimodal ERC can mitigate the drawbacks of uni-modal approaches. Recently, Graph Neural Networks (GNNs) have been widely used in a variety of fie...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 26; pp. 77 - 89
Main Authors Li, Jiang, Wang, Xiaoping, Lv, Guoqing, Zeng, Zhigang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Emotion Recognition in Conversation (ERC) plays a significant part in Human-Computer Interaction (HCI) systems since it can provide empathetic services. Multimodal ERC can mitigate the drawbacks of uni-modal approaches. Recently, Graph Neural Networks (GNNs) have been widely used in a variety of fields due to their superior performance in relation modeling. In multimodal ERC, GNNs are capable of extracting both long-distance contextual information and inter-modal interactive information. Unfortunately, since existing methods such as MMGCN directly fuse multiple modalities, redundant information may be generated and diverse information may be lost. In this work, we present a directed Graph based Cross-modal Feature Complementation (GraphCFC) module that can efficiently model contextual and interactive information. GraphCFC alleviates the problem of heterogeneity gap in multimodal fusion by utilizing multiple subspace extractors and Pair-wise Cross-modal Complementary (PairCC) strategy. We extract various types of edges from the constructed graph for encoding, thus enabling GNNs to extract crucial contextual and interactive information more accurately when performing message passing. Furthermore, we design a GNN structure called GAT-MLP, which can provide a new unified network framework for multimodal learning. The experimental results on two benchmark datasets show that our GraphCFC outperforms the state-of-the-art (SOTA) approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2023.3260635