GraphCFC: A Directed Graph Based Cross-Modal Feature Complementation Approach for Multimodal Conversational Emotion Recognition
Emotion Recognition in Conversation (ERC) plays a significant part in Human-Computer Interaction (HCI) systems since it can provide empathetic services. Multimodal ERC can mitigate the drawbacks of uni-modal approaches. Recently, Graph Neural Networks (GNNs) have been widely used in a variety of fie...
Saved in:
Published in | IEEE transactions on multimedia Vol. 26; pp. 77 - 89 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Emotion Recognition in Conversation (ERC) plays a significant part in Human-Computer Interaction (HCI) systems since it can provide empathetic services. Multimodal ERC can mitigate the drawbacks of uni-modal approaches. Recently, Graph Neural Networks (GNNs) have been widely used in a variety of fields due to their superior performance in relation modeling. In multimodal ERC, GNNs are capable of extracting both long-distance contextual information and inter-modal interactive information. Unfortunately, since existing methods such as MMGCN directly fuse multiple modalities, redundant information may be generated and diverse information may be lost. In this work, we present a directed Graph based Cross-modal Feature Complementation (GraphCFC) module that can efficiently model contextual and interactive information. GraphCFC alleviates the problem of heterogeneity gap in multimodal fusion by utilizing multiple subspace extractors and Pair-wise Cross-modal Complementary (PairCC) strategy. We extract various types of edges from the constructed graph for encoding, thus enabling GNNs to extract crucial contextual and interactive information more accurately when performing message passing. Furthermore, we design a GNN structure called GAT-MLP, which can provide a new unified network framework for multimodal learning. The experimental results on two benchmark datasets show that our GraphCFC outperforms the state-of-the-art (SOTA) approaches. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2023.3260635 |