Characterizing efficient feature selection for single-cell expression analysis
Abstract Unsupervised feature selection is a critical step for efficient and accurate analysis of single-cell RNA-seq data. Previous benchmarks used two different criteria to compare feature selection methods: (i) proportion of ground-truth marker genes included in the selected features and (ii) acc...
Saved in:
Published in | Briefings in bioinformatics Vol. 25; no. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
23.05.2024
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Unsupervised feature selection is a critical step for efficient and accurate analysis of single-cell RNA-seq data. Previous benchmarks used two different criteria to compare feature selection methods: (i) proportion of ground-truth marker genes included in the selected features and (ii) accuracy of cell clustering using ground-truth cell types. Here, we systematically compare the performance of 11 feature selection methods for both criteria. We first demonstrate the discordance between these criteria and suggest using the latter. We then compare the distribution of selected genes in their means between feature selection methods. We show that lowly expressed genes exhibit seriously high coefficients of variation and are mostly excluded by high-performance methods. In particular, high-deviation- and high-expression-based methods outperform the widely used in Seurat package in clustering cells and data visualization. We further show they also enable a clear separation of the same cell type from different tissues as well as accurate estimation of cell trajectories. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Juok Cho and Bukyung Baik contributed equally to this work. |
ISSN: | 1467-5463 1477-4054 1477-4054 |
DOI: | 10.1093/bib/bbae317 |