Maximum Resolution Based Method for Balancing Capacitor Voltages in 7-Level Single Phase Flying-Capacitor Wavelet Modulated Inverters

This paper develops and tests a method for balancing capacitor voltages in 7-level flying-capacitor (FC) inverters, which are operated by the wavelet modulation (WM) technique. This multi-level inverter has two capacitors in each pole, whose voltages deviate due to changes in its loading level. In o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industry applications Vol. 59; no. 4; pp. 5019 - 5031
Main Author Saleh, S. A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper develops and tests a method for balancing capacitor voltages in 7-level flying-capacitor (FC) inverters, which are operated by the wavelet modulation (WM) technique. This multi-level inverter has two capacitors in each pole, whose voltages deviate due to changes in its loading level. In order to ensure that all switching elements experience identical voltage stresses and no circulating currents, the voltage across each capacitor has to be maintained very close to its reference value. The proposed method to balance the capacitor voltage is based on adjusting the scales of resolution segmented wavelet basis functions, which are used as switching signals to operate a 7-level FC inverter. The adjustments of the scales can vary the widths and locations of switching pulses produced by the WM technique. The proposed capacitor voltage method is structured using a proportional-integral controller to adjust the scales, thus balancing the capacitor voltages. The accuracy, effectiveness, and response speed of the proposed method to balance capacitor voltage are demonstrated through simulation and experimental test cases.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2023.3258425