Finite Control-Set Learning Predictive Control for Power Converters
This letter concentrates on introducing a learning methodology that extends and improves classical finite control-set model predictive control approach, which is able to significantly mitigate the inherent limitations of system uncertainties and unknown perturbations subject to robustness characteri...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 71; no. 7; pp. 1 - 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This letter concentrates on introducing a learning methodology that extends and improves classical finite control-set model predictive control approach, which is able to significantly mitigate the inherent limitations of system uncertainties and unknown perturbations subject to robustness characteristics. To this end, in our work, a finite control-set learning predictive control architecture, which is addressed as an unsupervised learning technique, is presented. In this control task, we define a single neural network to learn the tracking control part online, and a robustifying control term is embedded into the suggested control solution so as to handle the approximator error and/or external disturbances, thereby leading to considerable enhancement of robustness. Dissimilar to classical finite control-set model predictive control, we establish that this method does not require a priori knowledge of model information and weighting factors, making our approach applicable to a variety of power converter systems. Finally, we highlight its advantages with a case study. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2023.3303646 |