Finite Control-Set Learning Predictive Control for Power Converters

This letter concentrates on introducing a learning methodology that extends and improves classical finite control-set model predictive control approach, which is able to significantly mitigate the inherent limitations of system uncertainties and unknown perturbations subject to robustness characteri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 71; no. 7; pp. 1 - 7
Main Authors Liu, Xing, Qiu, Lin, Fang, Youtong, Wang, Kui, Li, Yongdong, Rodriguez, Jose
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This letter concentrates on introducing a learning methodology that extends and improves classical finite control-set model predictive control approach, which is able to significantly mitigate the inherent limitations of system uncertainties and unknown perturbations subject to robustness characteristics. To this end, in our work, a finite control-set learning predictive control architecture, which is addressed as an unsupervised learning technique, is presented. In this control task, we define a single neural network to learn the tracking control part online, and a robustifying control term is embedded into the suggested control solution so as to handle the approximator error and/or external disturbances, thereby leading to considerable enhancement of robustness. Dissimilar to classical finite control-set model predictive control, we establish that this method does not require a priori knowledge of model information and weighting factors, making our approach applicable to a variety of power converter systems. Finally, we highlight its advantages with a case study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2023.3303646