Maximum Entropy Optimal Density Control of Discrete-Time Linear Systems and Schrödinger Bridges

We consider an entropy-regularized version of optimal density control of deterministic discrete-time linear systems. Entropy regularization, or a maximum entropy (MaxEnt) method for optimal control has attracted much attention especially in reinforcement learning due to its many advantages such as a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 69; no. 3; pp. 1 - 16
Main Authors Ito, Kaito, Kashima, Kenji
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider an entropy-regularized version of optimal density control of deterministic discrete-time linear systems. Entropy regularization, or a maximum entropy (MaxEnt) method for optimal control has attracted much attention especially in reinforcement learning due to its many advantages such as a natural exploration strategy. Despite the merits, high-entropy control policies induced by the regularization introduce probabilistic uncertainty into systems, which severely limits the applicability of MaxEnt optimal control to safety-critical systems. To remedy this situation, we impose a Gaussian density constraint at a specified time on the MaxEnt optimal control to directly control state uncertainty. Specifically, we derive the explicit form of the MaxEnt optimal density control. In addition, we also consider the case where density constraints are replaced by fixed point constraints. Then, we characterize the associated state process as a pinned process, which is a generalization of the Brownian bridge to linear systems. Finally, we reveal that the MaxEnt optimal density control gives the so-called Schrödinger bridge associated to a discrete-time linear system.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2023.3305319