Structural stability, enhanced magnetic, piezoelectric, and transport properties in (1-x)BiFeO3–(x)Ba0.70Sr0.30TiO3 nanoparticles
Multiferroic samples with composition (1-x)BiFeO3-(x)(Ba0.70Sr0.30)TiO3 (BFO-BST) were synthesized using a sol-gel route to study the effect of BST doping on structural, transport, and magnetic properties in BiFeO3 (BFO). X-ray diffraction studies with Rietveld analysis revealed that a phase transit...
Saved in:
Published in | Journal of applied physics Vol. 123; no. 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Multiferroic samples with composition (1-x)BiFeO3-(x)(Ba0.70Sr0.30)TiO3 (BFO-BST) were synthesized using a sol-gel route to study the effect of BST doping on structural, transport, and magnetic properties in BiFeO3 (BFO). X-ray diffraction studies with Rietveld analysis revealed that a phase transition occurred from rhombohedral (R3c) (0.0 ≤ × ≤ 0.15) to tetragonal (P4 mm) for x = 0.20 and nanocrystalline nature confirmed by transmission electron microscopy measurements. Piezoelectric properties improved as x increased from x = 0.0 (58 pC/N) to x = 0.20 (112 pC/N) increasing distortion in the crystal structure as evinced by Williamson-Hall analysis. Ferromagnetism was observed in doped BFO, different from the antiferromagnetic ordering in bulk BFO, indicating the noteworthy size effects and Fe-O-Fe bond angle variations in the magnetic ordering of BFO. An improvement in ferroelectric properties is observed with doping of BST compared to pristine BFO. Thermally activated conduction behavior occurred at low and high temperature regions as revealed by temperature dependent dc resistivity measurement. Effective improvements in dielectric response, meaning high dielectric constant with a low dielectric loss, were found in the doped samples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5023682 |