Artificial Neural Network Model for Evaluating Parameters of Reflection-Asymmetric Samples From Reference-Plane-Invariant Measurements
A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the mater...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 72; pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A technique based on artificial neural network (ANN) is proposed to extract the electromagnetic properties of reflection-asymmetric samples from reference-plane-invariant (RPI) scattering parameter measurements. It first determines reference plane transformation distances and then extracts the material properties. The number of neurons in the hidden layer of the ANN model was evaluated subject to accuracy and time constraints. We examined the conformity of the dataset of the ANN model and the required time for the training process by considering different numbers of neurons in the selected hidden layer. <inline-formula> <tex-math notation="LaTeX">S </tex-math></inline-formula>-parameter waveguide measurements at the <inline-formula> <tex-math notation="LaTeX">X </tex-math></inline-formula>-band (8.2-12.4 GHz) of two bianisotropic metamaterial (MM) slabs, as reflection-asymmetric samples, composed of square-shaped split ring resonators (SRRs) and asymmetrically positioned into their measurement cells were used to validate the ANN model and evaluate the effectiveness of the proposed method in extracting the electromagnetic properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2023.3273664 |