AR3n: A Reinforcement Learning-Based Assist-as-Needed Controller for Robotic Rehabilitation

In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics & automation magazine Vol. 31; no. 3; pp. 74 - 82
Main Authors Pareek, Shrey, Nisar, Harris J, Kesavadas, Thenkurussi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in real time based on a subject's tracking errors while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in the assistance mechanisms of the two controllers.
AbstractList In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in real time based on a subject’s tracking errors while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in the assistance mechanisms of the two controllers.
Author Kesavadas, Thenkurussi
Nisar, Harris J
Pareek, Shrey
Author_xml – sequence: 1
  givenname: Shrey
  orcidid: 0000-0003-4774-8641
  surname: Pareek
  fullname: Pareek, Shrey
  email: mail@shreypareek.com
  organization: Data Science Team at Cargill, Minneapolis, MN, USA
– sequence: 2
  givenname: Harris J
  orcidid: 0000-0003-2498-7535
  surname: Nisar
  fullname: Nisar, Harris J
  email: nisar2@illinois.edu
  organization: Department of Industrial and Enterprise Systems Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
– sequence: 3
  givenname: Thenkurussi
  orcidid: 0000-0002-3770-9756
  surname: Kesavadas
  fullname: Kesavadas, Thenkurussi
  email: tkesavadas@albany.edu
  organization: Research and Economic Development Executive Council, State University of New York, Albany, NY, USA
BookMark eNp9kM1LAzEQxYMo2FbvHjwseE7Nx2438bYWv6AqLAqChyWbndWUbVKT9OB_b0p7EA-eZhje783MG6ND6ywgdEbJlFIiLx_rasoI41POBMt5foBGtCgEZoy_HaaelARLydkxGoewJITmgosReq9qbq-yKqvB2N55DSuwMVuA8tbYD3ytAnRZFYIJEauAnwC6NJg7G70bBvBZgrLatS4anUw-VWsGE1U0zp6go14NAU73dYJeb29e5vd48Xz3MK8WWDPJIqatELorRFmqtlBSaDHTmou-L5UWIu-EZKwFrqGVXPWztgNOZdky1rFOUtXxCbrY-a69-9pAiM3SbbxNKxtOCZOzgnKWVLOdSnsXgoe-0fs7o1dmaChptkE2KchmG2SzDzKB5A-49mal_Pd_yPkOMQDwS07Tl6LkP4Z7gHo
CODEN IRAMEB
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3312021
crossref_primary_10_1186_s12984_024_01439_1
crossref_primary_10_1007_s42235_024_00568_6
crossref_primary_10_3390_robotics13010008
crossref_primary_10_1109_ACCESS_2023_3318324
crossref_primary_10_1186_s12984_024_01517_4
crossref_primary_10_1109_ACCESS_2023_3313637
Cites_doi 10.1109/TMECH.2018.2793877
10.1109/lra.2016.2525827
10.1109/tnsre.2004.843173
10.1109/LRA.2019.2961845
10.15607/RSS.2018.XIV.005
10.1007/978-94-017-9088-8_16
10.3389/frobt.2021.702845
10.1016/j.neunet.2014.01.012
10.1109/ICRA.2016.7487509
10.1109/ACCESS.2019.2922325
10.1109/SMC.2018.00262
10.1007/978-3-642-31401-8_12
10.1142/S0219843611002356
10.3389/frobt.2021.612834
10.1109/IROS40897.2019.8968464
10.3200/jmbr.40.6.545-557
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/MRA.2023.3282434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-223X
EndPage 82
ExternalDocumentID 10_1109_MRA_2023_3282434
10158787
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1502339
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AFOGA
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c292t-1b88cd5877ab5a98c86cc38ff7ac884d8922be3ceb93af6bde3197b22d2d91ad3
IEDL.DBID RIE
ISSN 1070-9932
IngestDate Mon Jun 30 10:18:38 EDT 2025
Tue Jul 01 02:23:34 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Wed Aug 27 02:20:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-1b88cd5877ab5a98c86cc38ff7ac884d8922be3ceb93af6bde3197b22d2d91ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2498-7535
0000-0003-4774-8641
0000-0002-3770-9756
PQID 3102965132
PQPubID 75744
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_MRA_2023_3282434
ieee_primary_10158787
proquest_journals_3102965132
crossref_primary_10_1109_MRA_2023_3282434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE robotics & automation magazine
PublicationTitleAbbrev MRA
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Sutton (ref12) 2018
ref15
Weaver (ref20) 2013
Schmidt (ref2) 2008
ref14
ref11
ref10
ref1
ref17
ref16
ref18
Haarnoja (ref19) 2018
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2018
  ident: ref19
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– ident: ref7
  doi: 10.1109/TMECH.2018.2793877
– ident: ref4
  doi: 10.1109/lra.2016.2525827
– ident: ref5
  doi: 10.1109/tnsre.2004.843173
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref12
– ident: ref11
  doi: 10.1109/LRA.2019.2961845
– ident: ref16
  doi: 10.15607/RSS.2018.XIV.005
– volume-title: Motor Learning and Performance: A Situation-Based Learning Approach
  year: 2008
  ident: ref2
– ident: ref3
  doi: 10.1007/978-94-017-9088-8_16
– ident: ref17
  doi: 10.3389/frobt.2021.702845
– year: 2013
  ident: ref20
  article-title: The optimal reward baseline for gradient-based reinforcement learning
– ident: ref13
  doi: 10.1016/j.neunet.2014.01.012
– ident: ref14
  doi: 10.1109/ICRA.2016.7487509
– ident: ref10
  doi: 10.1109/ACCESS.2019.2922325
– ident: ref15
  doi: 10.1109/SMC.2018.00262
– ident: ref8
  doi: 10.1007/978-3-642-31401-8_12
– ident: ref9
  doi: 10.1142/S0219843611002356
– ident: ref1
  doi: 10.3389/frobt.2021.612834
– ident: ref18
  doi: 10.1109/IROS40897.2019.8968464
– ident: ref6
  doi: 10.3200/jmbr.40.6.545-557
SSID ssj0014838
Score 2.4605787
Snippet In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Adaptation models
Behavioral sciences
Comparative studies
Controllers
Handwriting
Handwriting recognition
Impedance
Patient rehabilitation
Rehabilitation
Rehabilitation robots
Reinforcement learning
Robot learning
Robots
Service robots
Tracking errors
Training
Virtual reality
Title AR3n: A Reinforcement Learning-Based Assist-as-Needed Controller for Robotic Rehabilitation
URI https://ieeexplore.ieee.org/document/10158787
https://www.proquest.com/docview/3102965132
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoKAMLg9PUdhKHLVRUFVI7RFSqxBD5FQaqBPWx8Ou5OElVQCC2yLKdk7-z786-B0K3oeaRybIQM600BoknseAhw37IDGgcike8DE6eTIPxjD3N_XkdrG5jYYwx1vnMuOWnfcvXhdqUV2Wwwwc-Bw5roRZYblWw1vbJgHFaxb2FHgahS5o3SS_qT5LYLcuEuxQMDEbZFxlki6r8OImteBkdoWlDWOVV8uZu1tJVH99yNv6b8mN0WCuaTlxxxgnaM_kpOthJP3iGXuKE5vdO7CTG5k9V9qrQqVOuvuIHkHDaAQCBFbBY4SlIOmgYVt7tC7N0YJCTFLKAf8Akuzm_O2g2enwejnFdbAErEpE1HkjOlQYiQyF9AQjxQCnKAUahOGcAKSHSUGVkREUWSG1g84aSEE10NBCanqN2XuTmAjlShwyaCAsywQQhEcykKFguHrCBEaSL-s3yp6qmqiyIsUitReJFKQCWloClNWBddLcd8V5l4fijb6dc_51-1dJ3Ua-BOK336SoF5RbI88Ekv_xl2BXah9lZ5VbWQ-31cmOuQQ9ZyxvLf58oWtjs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oHtSDbyOKugcvHrpA22W73pBIUIEDgYTEw6YvPEjAwHLx1zvbXQhqNN42TR-TftOdmXYeADehEZEdjULCjTYEJZ4iUoScBCG3qHFoEYk0OLnTrbUG_GkYDPNgdRcLY611zmfWTz_dW76Z6kV6VYYnvBoI5LBN2ELBH9AsXGv1aMAFyyLfwgpBsUuXr5KVqNzp1f20ULjP0MTgjH-RQq6syo9_sRMwzX3oLknL_Ere_EWifP3xLWvjv2k_gL1c1fTqGW8cwoadHMHuWgLCY3ip99jkzqt7PesyqGp3WejlSVdfyT3KOOMhhMgMRM5JF2UdNjQy__axnXk4yOtN1RTXwEnWs36fwKD50G-0SF5ugWga0YRUlRDaIJGhVIFEjERNayYQSKmF4AgqpcoybVXE5KimjMXjGypKDTVRVRp2CoXJdGLPwFMm5NhEeW0kuaQ0wpk0Q9ulgoxgJS1Cebn9sc6pSktijGNnk1SiGAGLU8DiHLAi3K5GvGd5OP7oe5Lu_1q_bOuLUFpCHOcndR6jeovkBWiUn_8y7Bq2W_1OO24_dp8vYAdX4pmTWQkKyWxhL1ErSdSV48VPpfjcNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AR3n%3A+A+Reinforcement+Learning-Based+Assist-as-Needed+Controller+for+Robotic+Rehabilitation&rft.jtitle=IEEE+robotics+%26+automation+magazine&rft.au=Pareek%2C+Shrey&rft.au=Nisar%2C+Harris+J&rft.au=Kesavadas%2C+Thenkurussi&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1070-9932&rft.volume=31&rft.issue=3&rft.spage=74&rft.epage=82&rft_id=info:doi/10.1109%2FMRA.2023.3282434&rft.externalDocID=10158787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9932&client=summon