AR3n: A Reinforcement Learning-Based Assist-as-Needed Controller for Robotic Rehabilitation
In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific...
Saved in:
Published in | IEEE robotics & automation magazine Vol. 31; no. 3; pp. 74 - 82 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in real time based on a subject's tracking errors while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in the assistance mechanisms of the two controllers. |
---|---|
AbstractList | In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in real time based on a subject’s tracking errors while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in the assistance mechanisms of the two controllers. |
Author | Kesavadas, Thenkurussi Nisar, Harris J Pareek, Shrey |
Author_xml | – sequence: 1 givenname: Shrey orcidid: 0000-0003-4774-8641 surname: Pareek fullname: Pareek, Shrey email: mail@shreypareek.com organization: Data Science Team at Cargill, Minneapolis, MN, USA – sequence: 2 givenname: Harris J orcidid: 0000-0003-2498-7535 surname: Nisar fullname: Nisar, Harris J email: nisar2@illinois.edu organization: Department of Industrial and Enterprise Systems Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Thenkurussi orcidid: 0000-0002-3770-9756 surname: Kesavadas fullname: Kesavadas, Thenkurussi email: tkesavadas@albany.edu organization: Research and Economic Development Executive Council, State University of New York, Albany, NY, USA |
BookMark | eNp9kM1LAzEQxYMo2FbvHjwseE7Nx2438bYWv6AqLAqChyWbndWUbVKT9OB_b0p7EA-eZhje783MG6ND6ywgdEbJlFIiLx_rasoI41POBMt5foBGtCgEZoy_HaaelARLydkxGoewJITmgosReq9qbq-yKqvB2N55DSuwMVuA8tbYD3ytAnRZFYIJEauAnwC6NJg7G70bBvBZgrLatS4anUw-VWsGE1U0zp6go14NAU73dYJeb29e5vd48Xz3MK8WWDPJIqatELorRFmqtlBSaDHTmou-L5UWIu-EZKwFrqGVXPWztgNOZdky1rFOUtXxCbrY-a69-9pAiM3SbbxNKxtOCZOzgnKWVLOdSnsXgoe-0fs7o1dmaChptkE2KchmG2SzDzKB5A-49mal_Pd_yPkOMQDwS07Tl6LkP4Z7gHo |
CODEN | IRAMEB |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3312021 crossref_primary_10_1186_s12984_024_01439_1 crossref_primary_10_1007_s42235_024_00568_6 crossref_primary_10_3390_robotics13010008 crossref_primary_10_1109_ACCESS_2023_3318324 crossref_primary_10_1186_s12984_024_01517_4 crossref_primary_10_1109_ACCESS_2023_3313637 |
Cites_doi | 10.1109/TMECH.2018.2793877 10.1109/lra.2016.2525827 10.1109/tnsre.2004.843173 10.1109/LRA.2019.2961845 10.15607/RSS.2018.XIV.005 10.1007/978-94-017-9088-8_16 10.3389/frobt.2021.702845 10.1016/j.neunet.2014.01.012 10.1109/ICRA.2016.7487509 10.1109/ACCESS.2019.2922325 10.1109/SMC.2018.00262 10.1007/978-3-642-31401-8_12 10.1142/S0219843611002356 10.3389/frobt.2021.612834 10.1109/IROS40897.2019.8968464 10.3200/jmbr.40.6.545-557 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/MRA.2023.3282434 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-223X |
EndPage | 82 |
ExternalDocumentID | 10_1109_MRA_2023_3282434 10158787 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1502339 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AFOGA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c292t-1b88cd5877ab5a98c86cc38ff7ac884d8922be3ceb93af6bde3197b22d2d91ad3 |
IEDL.DBID | RIE |
ISSN | 1070-9932 |
IngestDate | Mon Jun 30 10:18:38 EDT 2025 Tue Jul 01 02:23:34 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Wed Aug 27 02:20:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c292t-1b88cd5877ab5a98c86cc38ff7ac884d8922be3ceb93af6bde3197b22d2d91ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2498-7535 0000-0003-4774-8641 0000-0002-3770-9756 |
PQID | 3102965132 |
PQPubID | 75744 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_MRA_2023_3282434 ieee_primary_10158787 proquest_journals_3102965132 crossref_primary_10_1109_MRA_2023_3282434 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE robotics & automation magazine |
PublicationTitleAbbrev | MRA |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Sutton (ref12) 2018 ref15 Weaver (ref20) 2013 Schmidt (ref2) 2008 ref14 ref11 ref10 ref1 ref17 ref16 ref18 Haarnoja (ref19) 2018 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – year: 2018 ident: ref19 article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor – ident: ref7 doi: 10.1109/TMECH.2018.2793877 – ident: ref4 doi: 10.1109/lra.2016.2525827 – ident: ref5 doi: 10.1109/tnsre.2004.843173 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: ref12 – ident: ref11 doi: 10.1109/LRA.2019.2961845 – ident: ref16 doi: 10.15607/RSS.2018.XIV.005 – volume-title: Motor Learning and Performance: A Situation-Based Learning Approach year: 2008 ident: ref2 – ident: ref3 doi: 10.1007/978-94-017-9088-8_16 – ident: ref17 doi: 10.3389/frobt.2021.702845 – year: 2013 ident: ref20 article-title: The optimal reward baseline for gradient-based reinforcement learning – ident: ref13 doi: 10.1016/j.neunet.2014.01.012 – ident: ref14 doi: 10.1109/ICRA.2016.7487509 – ident: ref10 doi: 10.1109/ACCESS.2019.2922325 – ident: ref15 doi: 10.1109/SMC.2018.00262 – ident: ref8 doi: 10.1007/978-3-642-31401-8_12 – ident: ref9 doi: 10.1142/S0219843611002356 – ident: ref1 doi: 10.3389/frobt.2021.612834 – ident: ref18 doi: 10.1109/IROS40897.2019.8968464 – ident: ref6 doi: 10.3200/jmbr.40.6.545-557 |
SSID | ssj0014838 |
Score | 2.4605787 |
Snippet | In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 74 |
SubjectTerms | Adaptation models Behavioral sciences Comparative studies Controllers Handwriting Handwriting recognition Impedance Patient rehabilitation Rehabilitation Rehabilitation robots Reinforcement learning Robot learning Robots Service robots Tracking errors Training Virtual reality |
Title | AR3n: A Reinforcement Learning-Based Assist-as-Needed Controller for Robotic Rehabilitation |
URI | https://ieeexplore.ieee.org/document/10158787 https://www.proquest.com/docview/3102965132 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoKAMLg9PUdhKHLVRUFVI7RFSqxBD5FQaqBPWx8Ou5OElVQCC2yLKdk7-z786-B0K3oeaRybIQM600BoknseAhw37IDGgcike8DE6eTIPxjD3N_XkdrG5jYYwx1vnMuOWnfcvXhdqUV2Wwwwc-Bw5roRZYblWw1vbJgHFaxb2FHgahS5o3SS_qT5LYLcuEuxQMDEbZFxlki6r8OImteBkdoWlDWOVV8uZu1tJVH99yNv6b8mN0WCuaTlxxxgnaM_kpOthJP3iGXuKE5vdO7CTG5k9V9qrQqVOuvuIHkHDaAQCBFbBY4SlIOmgYVt7tC7N0YJCTFLKAf8Akuzm_O2g2enwejnFdbAErEpE1HkjOlQYiQyF9AQjxQCnKAUahOGcAKSHSUGVkREUWSG1g84aSEE10NBCanqN2XuTmAjlShwyaCAsywQQhEcykKFguHrCBEaSL-s3yp6qmqiyIsUitReJFKQCWloClNWBddLcd8V5l4fijb6dc_51-1dJ3Ua-BOK336SoF5RbI88Ekv_xl2BXah9lZ5VbWQ-31cmOuQQ9ZyxvLf58oWtjs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oHtSDbyOKugcvHrpA22W73pBIUIEDgYTEw6YvPEjAwHLx1zvbXQhqNN42TR-TftOdmXYeADehEZEdjULCjTYEJZ4iUoScBCG3qHFoEYk0OLnTrbUG_GkYDPNgdRcLY611zmfWTz_dW76Z6kV6VYYnvBoI5LBN2ELBH9AsXGv1aMAFyyLfwgpBsUuXr5KVqNzp1f20ULjP0MTgjH-RQq6syo9_sRMwzX3oLknL_Ere_EWifP3xLWvjv2k_gL1c1fTqGW8cwoadHMHuWgLCY3ip99jkzqt7PesyqGp3WejlSVdfyT3KOOMhhMgMRM5JF2UdNjQy__axnXk4yOtN1RTXwEnWs36fwKD50G-0SF5ugWga0YRUlRDaIJGhVIFEjERNayYQSKmF4AgqpcoybVXE5KimjMXjGypKDTVRVRp2CoXJdGLPwFMm5NhEeW0kuaQ0wpk0Q9ulgoxgJS1Cebn9sc6pSktijGNnk1SiGAGLU8DiHLAi3K5GvGd5OP7oe5Lu_1q_bOuLUFpCHOcndR6jeovkBWiUn_8y7Bq2W_1OO24_dp8vYAdX4pmTWQkKyWxhL1ErSdSV48VPpfjcNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AR3n%3A+A+Reinforcement+Learning-Based+Assist-as-Needed+Controller+for+Robotic+Rehabilitation&rft.jtitle=IEEE+robotics+%26+automation+magazine&rft.au=Pareek%2C+Shrey&rft.au=Nisar%2C+Harris+J&rft.au=Kesavadas%2C+Thenkurussi&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1070-9932&rft.volume=31&rft.issue=3&rft.spage=74&rft.epage=82&rft_id=info:doi/10.1109%2FMRA.2023.3282434&rft.externalDocID=10158787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9932&client=summon |