AR3n: A Reinforcement Learning-Based Assist-as-Needed Controller for Robotic Rehabilitation
In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific...
Saved in:
Published in | IEEE robotics & automation magazine Vol. 31; no. 3; pp. 74 - 82 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning (RL), to supply adaptive assistance during a robot-assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient-specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in real time based on a subject's tracking errors while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in the assistance mechanisms of the two controllers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1070-9932 1558-223X |
DOI: | 10.1109/MRA.2023.3282434 |