Coarray Tensor Direction-of-Arrival Estimation
Augmented coarrays can be derived from spatially undersampled signals of sparse arrays for underdetermined direction-of-arrival (DOA) estimation. With the extended dimension of sparse arrays, the sampled signals can be modeled as sub-Nyquist tensors, thereby enabling coarray tensor processing to enh...
Saved in:
Published in | IEEE transactions on signal processing Vol. 71; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Augmented coarrays can be derived from spatially undersampled signals of sparse arrays for underdetermined direction-of-arrival (DOA) estimation. With the extended dimension of sparse arrays, the sampled signals can be modeled as sub-Nyquist tensors, thereby enabling coarray tensor processing to enhance the estimation performance. The existing methods, however, are not applicable to generalized multi-dimensional sparse arrays, such as sparse planar array and sparse cubic array, and have not fully exploited the achievable source identifiability. In this paper, we propose a coarray tensor DOA estimation algorithm for multi-dimensional structured sparse arrays and investigate an optimal coarray tensor structure for source identifiability enhancement. Specifically, the cross-correlation tensor between sub-Nyquist tensor signals is calculated to derive a coarray tensor. Based on the uniqueness condition for coarray tensor decomposition, the achievable source identifiability is analysed. Furthermore, to enhance the source identifiability, a dimension increment approach is proposed to embed shifting information in the coarray tensor. The shifting-embedded coarray tensor is subsequently reshaped to optimize the source identifiability. The resulting maximum number of degrees-of-freedom is theoretically proved to exceed the number of physical sensors. Hence, the optimally reshaped coarray tensor can be decomposed for underdetermined DOA estimation with closed-form solutions. Simulation results demonstrate the effectiveness of the proposed algorithm in both underdetermined and overdetermined cases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2023.3260559 |