Coarray Tensor Direction-of-Arrival Estimation

Augmented coarrays can be derived from spatially undersampled signals of sparse arrays for underdetermined direction-of-arrival (DOA) estimation. With the extended dimension of sparse arrays, the sampled signals can be modeled as sub-Nyquist tensors, thereby enabling coarray tensor processing to enh...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 71; pp. 1 - 14
Main Authors Zheng, Hang, Zhou, Chengwei, Shi, Zhiguo, Gu, Yujie, Zhang, Yimin D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Augmented coarrays can be derived from spatially undersampled signals of sparse arrays for underdetermined direction-of-arrival (DOA) estimation. With the extended dimension of sparse arrays, the sampled signals can be modeled as sub-Nyquist tensors, thereby enabling coarray tensor processing to enhance the estimation performance. The existing methods, however, are not applicable to generalized multi-dimensional sparse arrays, such as sparse planar array and sparse cubic array, and have not fully exploited the achievable source identifiability. In this paper, we propose a coarray tensor DOA estimation algorithm for multi-dimensional structured sparse arrays and investigate an optimal coarray tensor structure for source identifiability enhancement. Specifically, the cross-correlation tensor between sub-Nyquist tensor signals is calculated to derive a coarray tensor. Based on the uniqueness condition for coarray tensor decomposition, the achievable source identifiability is analysed. Furthermore, to enhance the source identifiability, a dimension increment approach is proposed to embed shifting information in the coarray tensor. The shifting-embedded coarray tensor is subsequently reshaped to optimize the source identifiability. The resulting maximum number of degrees-of-freedom is theoretically proved to exceed the number of physical sensors. Hence, the optimally reshaped coarray tensor can be decomposed for underdetermined DOA estimation with closed-form solutions. Simulation results demonstrate the effectiveness of the proposed algorithm in both underdetermined and overdetermined cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2023.3260559