Light-Dependent Isoprene Emission (Characterization of a Thylakoid-Bound Isoprene Synthase in Salix discolor Chloroplasts)

Isoprene synthase is an enzyme that is responsible for the production of the volatile C5 hydrocarbon, isoprene, in plant leaves. Isoprene formation in numerous C3 plants is interesting because (a) large quantities of isoprene are emitted, 5 x 1014 g of C annually, (b) a plant may release 1 to 8% of...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 112; no. 1; pp. 171 - 182
Main Authors Wildermuth, M. C., Fall, R.
Format Journal Article
LanguageEnglish
Published United States 01.09.1996
Online AccessGet full text

Cover

Loading…
More Information
Summary:Isoprene synthase is an enzyme that is responsible for the production of the volatile C5 hydrocarbon, isoprene, in plant leaves. Isoprene formation in numerous C3 plants is interesting because (a) large quantities of isoprene are emitted, 5 x 1014 g of C annually, (b) a plant may release 1 to 8% of its fixed C as isoprene, and (c) the function of plant isoprene production is unknown. Because of the dependence of foliar isoprene emission on light, the existence of a plastidic isoprene synthase has been postulated. To pursue this idea, a method to isolate chloroplasts from Salix discolor was developed and shows a plastidic isoprene synthase that is tightly bound to the thylakoid membrane and accessible to trypsin inactivation. The thylakoid-bound isoprene synthase has catalytic properties similar to known soluble isoprene synthases; however, the relationship between these enzymes is unknown. The discovery of a thylakoid-bound isoprene synthase with a stromal-facing domain places it in the chloroplast, where it may be subject to numerous direct and indirect light-mediated effects. Implications for the light-dependent regulation of foliar isoprene production and its function are presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1104/pp.112.1.171