Design and Material Optimization of Oil Plant Piping Structure for Mitigating Erosion Wear

Erosion in piping structures poses a significant challenge for oil industries as the conveyance of solid particles leads to operational malfunctions and structural failures affecting the overall oil plant operation. Conventional oil recovery methods have historically dominated, while in response to...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 12; p. 5234
Main Authors Ahn, Jun-Hyuk, Asif, Rabea, Lee, Heon-Woo, Hwang, In-Ju, Hu, Jong-Wan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Erosion in piping structures poses a significant challenge for oil industries as the conveyance of solid particles leads to operational malfunctions and structural failures affecting the overall oil plant operation. Conventional oil recovery methods have historically dominated, while in response to the challenges imposed by declining conventional oil production, the global shift towards non-conventional methods necessitates a reevaluation of erosion mitigation strategies due to increased piping infrastructure. Therefore, in this study research has been conducted to reduce erosion and optimize the piping structure. Variables impacting the erosion in piping were investigated from the literature, and simulation cases were made based on the impacted variables. Computational Fluid Dynamics (CFDs) analysis was performed using the Discrete Phase Model (DPM) to determine the erosion wear rate in each simulation case; based on the CFD results, variables with low Turbulent Dissipation Rates (TDRs) and Erosion Rates (ERs) were determined, and the optimized piping structure was designed. As a result, the optimized piping structure showed an 80% reduction in the turbulent dissipation rate and a 99.2% decrease in the erosion wear rate. These findings highlight a substantial improvement in erosion control, ensuring the safety and longevity of piping structures in oil plant operations.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14125234