Large Scale Distributed Collaborative Unlabeled Motion Planning With Graph Policy Gradients

In this letter, we present a learning method to solve the unlabelled motion problem with motion constraints and space constraints in 2D space for a large number of robots. To solve the problem of arbitrary dynamics and constraints we propose formulating the problem as a multi-agent problem. We are a...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 6; no. 3; pp. 5340 - 5347
Main Authors Khan, Arbaaz, Kumar, Vijay, Ribeiro, Alejandro
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this letter, we present a learning method to solve the unlabelled motion problem with motion constraints and space constraints in 2D space for a large number of robots. To solve the problem of arbitrary dynamics and constraints we propose formulating the problem as a multi-agent problem. We are able to demonstrate the scalability of our methods for a large number of robots by employing a graph neural network (GNN) to parameterize policies for the robots. The GNN reduces the dimensionality of the problem by learning filters that aggregate information among robots locally, similar to how a convolutional neural network is able to learn local features in an image. Additionally, by employing a GNN we are also able to overcome the computational overhead of training policies for a large number of robots by first training graph filters for a small number of robots followed by zero-shot policy transfer to a larger number of robots. We demonstrate the effectiveness of our framework through various simulations.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2021.3074885