Impact of Snowpack on the Land Surface Phenology in the Tianshan Mountains, Central Asia
The accumulation and ablation processes of seasonal snow significantly affect the land surface phenology in a mountainous ecosystem. However, the ability of snow to regulate the alpine land surface phenology in the arid regions is not well described in the context of climate change. The impact of sn...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 14; p. 3462 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The accumulation and ablation processes of seasonal snow significantly affect the land surface phenology in a mountainous ecosystem. However, the ability of snow to regulate the alpine land surface phenology in the arid regions is not well described in the context of climate change. The impact of snowpack changes on land surface phenology and its driving factors were investigated in the Tianshan Mountains using the land surface phenology metrics derived from satellited products and a snow dataset from downscaled regional climate model simulations covering the period from 1983 to 2015. The results demonstrated that the annual mean start of growing season (SOS) and length of growing season (LOS) experienced a significant (p < 0.05) decrease and increase with a rate of −2.45 days/decade and 2.98 days/decade, respectively. The significantly advanced SOS and increased LOS were mainly seen in the Western Tianshan Mountains and Ili Valley regions with elevations from 2500 to 3500 m a.s.l and below 3000 m a.s.l, respectively. During the early spring, the significant decline in snow cover fraction (SCF) could advance the SOS. In contrast, snowmelt amount and annual maximum snow water equivalent (SWE) have an almost equally substantial positive correlation with annual maximum vegetation greenness. In particular, the SOS of grassland was the most sensitive to variations of snow cover fraction during early spring than that of other vegetation types, and their strong relationship was mainly located at elevations from 1500 to 2500 m a.s.l. Its greenness was significantly controlled by the annual maximum snow water equivalent in all elevation bands. Both decreased SCF and increased temperature in the early spring caused a significant advance of the SOS, consequently prolonging the LOS. Meanwhile, more SWE and snowmelt amount could significantly promote vegetation greenness by regulating the soil moisture. The results can improve the understanding of the snow ecosystem services in the alpine regions under climate change. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14143462 |