High Performance Dual Gate Blue Laser Annealed Poly-Si Thin-Film Transistor for High-Resolution Displays

We report a dual gate (DG), low-temperature polysilicon (LTPS) thin-film transistor (TFT) using blue laser annealing (BLA) of amorphous silicon. The DG TFTs with variable bottom gate lengths (L BG ) from 2 to 8 <inline-formula> <tex-math notation="LaTeX">\mu \text {m} </tex-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 68; no. 8; pp. 3863 - 3869
Main Authors Jeong, Duk Young, Billah, Mohammad Masum, Siddik, Abu Bakar, Han, Byungju, Chang, Yeoungjin, Jang, Jin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a dual gate (DG), low-temperature polysilicon (LTPS) thin-film transistor (TFT) using blue laser annealing (BLA) of amorphous silicon. The DG TFTs with variable bottom gate lengths (L BG ) from 2 to 8 <inline-formula> <tex-math notation="LaTeX">\mu \text {m} </tex-math></inline-formula> and a fixed top gate length (L TG ) of 6 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> are investigated. The drain currents of the DG LTPS TFT with L BG > L TG by 2 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> under DG sweep (DS) are ~4.3 times those of the single gate TFT. The high carrier concentrations (~10 19 cm −3 ) at both interfaces (top gate insulator (GI)/poly-Si and poly-Si/bottom GI) under DS is confirmed by technology computer-aided design (TCAD) simulation, which might lead to high drain currents. The poly-Si layer exhibits no grain boundary protrusion from the transmission electron microscopy (TEM) cross-sectional micrograph and thus induces a strong bulk accumulation effect under DS. The fabricated DG TFT-based ring oscillator (RO) and shift register (SR) exhibit an excellent oscillation frequency of 15.8 MHz, fast-rising and falling time of 370 and 366 ns at a driving voltage of −10 V, respectively.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2021.3091965