Delay-Adaptive Predictor Feedback Control of Reaction-Advection-Diffusion PDEs With a Delayed Distributed Input
We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-lo...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 7; pp. 3762 - 3769 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2021.3109512 |
Cover
Loading…
Abstract | We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction-advection-diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach. |
---|---|
AbstractList | We consider a system of reaction–advection–diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the [Formula Omitted] sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction–advection–diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the [Formula Omitted] sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach. We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction-advection-diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach. |
Author | Wang, Shanshan Diagne, Mamadou Qi, Jie |
Author_xml | – sequence: 1 givenname: Shanshan orcidid: 0000-0002-3723-8958 surname: Wang fullname: Wang, Shanshan email: wss_dhu@126.com organization: Rensselaer Polytechnic Institute, Troy, NY, USA – sequence: 2 givenname: Mamadou orcidid: 0000-0001-5597-7669 surname: Diagne fullname: Diagne, Mamadou email: controlatdiagne@gmail.com organization: Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA – sequence: 3 givenname: Jie orcidid: 0000-0001-6565-7984 surname: Qi fullname: Qi, Jie email: jieqi@dhu.edu.cn organization: College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology of Ministry Education, Donghua University, Shanghai, China |
BookMark | eNp9kE1rGzEQhkVJoI6Te6EXQc_raLS7Wulo7KQ1GBJCQo6LVhpRpe7KlbQB__vKdeghh5zmHXg_4LkgZ2MYkZAvwBYATF0_LlcLzjgs6vK1wD-RGbStrHjL6zMyYwxkpbgUn8lFSi_lFU0DMxLWuNOHamn1PvtXpPcRrTc5RHqLaAdtftFVGHMMOxocfUBtsg9j8b_iSa29c1Mqit6vbxJ99vkn1fRfK1q69ilHP0y56M24n_IlOXd6l_Dq7c7J0-3N4-pHtb37vlktt5XhCnLlJDRMdarGzmjmoBGiMVhbxxyTKIfOat4OnA9mYFY4Vzyikx3UjZW8sVDPybdT7z6GPxOm3L-EKY5lsudCghI1cFVc7OQyMaQU0fX76H_reOiB9UesfcHaH7H2b1hLRLyLGJ_1EUWO2u8-Cn49BT0i_t9RLZeqgfovOkKGoQ |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111645 crossref_primary_10_1109_TAC_2022_3144609 crossref_primary_10_1109_TAC_2024_3399629 crossref_primary_10_1016_j_automatica_2024_111784 crossref_primary_10_1002_rnc_7504 crossref_primary_10_1016_j_automatica_2023_111235 crossref_primary_10_1016_j_automatica_2025_112266 crossref_primary_10_1016_j_ifacol_2025_01_070 crossref_primary_10_1002_rnc_7257 crossref_primary_10_1016_j_automatica_2023_111242 crossref_primary_10_1080_00207721_2022_2056654 crossref_primary_10_1109_LCSYS_2025_3541465 |
Cites_doi | 10.1016/j.automatica.2017.10.006 10.1016/j.mspro.2014.07.099 10.1109/CDC.2018.8619657 10.1016/j.automatica.2020.109364 10.1137/1.9781611975758.15 10.1115/1.4046154 10.1109/ACC.2009.5159839 10.1109/TAC.2008.927798 10.1109/TAC.2009.2034923 10.1016/j.sysconle.2009.08.006 10.1109/CAC.2017.8244067 10.1016/j.automatica.2015.01.032 10.1016/j.automatica.2008.04.013 10.1515/9781400835362 10.1109/TAC.2018.2849560 10.1137/1.9780898718607 10.1126/science.1179047 10.1109/TAC.2002.800737 10.1109/ACC.2015.7170909 10.1109/TAC.2015.2491718 10.1109/CCDC.2011.5968195 10.1080/00207179.2017.1314551 10.1016/j.automatica.2016.02.006 10.1007/s00498-003-0128-6 10.1137/15M1034325 10.1109/TAC.2017.2702103 10.1016/j.automatica.2017.04.022 10.1007/BF00934533 10.1007/978-1-4612-5561-1 10.1109/ACC.2008.4587273 10.1109/ICARCV.2010.5707365 10.1109/TAC.2016.2590506 10.1109/ICNSC.2006.1673126 10.1016/j.automatica.2019.04.032 10.1109/CDC.2005.1583065 10.1016/j.automatica.2017.07.069 10.1109/CDC.2007.4434927 10.1016/j.automatica.2018.06.050 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2021.3109512 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 3769 |
ExternalDocumentID | 10_1109_TAC_2021_3109512 9528941 |
Genre | orig-research |
GrantInformation_xml | – fundername: USA National Science Foundation CAREER grantid: CMMI-1944051 – fundername: Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University grantid: CUSF-DH-D-2018098 – fundername: State Key Laboratory of Synthetical Automation for Process Industries funderid: 10.13039/501100011248 – fundername: National Natural Science Foundation of China grantid: 61773112; 62173084 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-f81409793e7ca0f14664ce3df0f08e8b7da25b22bcb0d6ffa0f6787134d824d13 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:18:30 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 03:36:39 EDT 2025 Wed Aug 27 02:23:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-f81409793e7ca0f14664ce3df0f08e8b7da25b22bcb0d6ffa0f6787134d824d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6565-7984 0000-0002-3723-8958 0000-0001-5597-7669 |
PQID | 2681963129 |
PQPubID | 85475 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9528941 proquest_journals_2681963129 crossref_primary_10_1109_TAC_2021_3109512 crossref_citationtrail_10_1109_TAC_2021_3109512 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Pazy (ref34) 1983 |
References_xml | – ident: ref17 doi: 10.1016/j.automatica.2017.10.006 – ident: ref37 doi: 10.1016/j.mspro.2014.07.099 – ident: ref19 doi: 10.1109/CDC.2018.8619657 – ident: ref18 doi: 10.1016/j.automatica.2020.109364 – ident: ref20 doi: 10.1137/1.9781611975758.15 – ident: ref38 doi: 10.1115/1.4046154 – ident: ref33 doi: 10.1109/ACC.2009.5159839 – ident: ref35 doi: 10.1109/TAC.2008.927798 – ident: ref22 doi: 10.1109/TAC.2009.2034923 – ident: ref11 doi: 10.1016/j.sysconle.2009.08.006 – ident: ref27 doi: 10.1109/CAC.2017.8244067 – ident: ref9 doi: 10.1016/j.automatica.2015.01.032 – ident: ref5 doi: 10.1016/j.automatica.2008.04.013 – ident: ref36 doi: 10.1515/9781400835362 – ident: ref13 doi: 10.1109/TAC.2018.2849560 – ident: ref28 doi: 10.1137/1.9780898718607 – ident: ref3 doi: 10.1126/science.1179047 – ident: ref1 doi: 10.1109/TAC.2002.800737 – ident: ref29 doi: 10.1109/ACC.2015.7170909 – ident: ref7 doi: 10.1109/TAC.2015.2491718 – ident: ref23 doi: 10.1109/CCDC.2011.5968195 – ident: ref2 doi: 10.1080/00207179.2017.1314551 – ident: ref16 doi: 10.1016/j.automatica.2016.02.006 – ident: ref6 doi: 10.1007/s00498-003-0128-6 – ident: ref10 doi: 10.1137/15M1034325 – ident: ref25 doi: 10.1109/TAC.2017.2702103 – ident: ref15 doi: 10.1016/j.automatica.2017.04.022 – ident: ref4 doi: 10.1007/BF00934533 – volume-title: Semigroups of Linear Operators and Applications to Partial Differential Equations year: 1983 ident: ref34 doi: 10.1007/978-1-4612-5561-1 – ident: ref21 doi: 10.1109/ACC.2008.4587273 – ident: ref26 doi: 10.1109/ICARCV.2010.5707365 – ident: ref8 doi: 10.1109/TAC.2016.2590506 – ident: ref30 doi: 10.1109/ICNSC.2006.1673126 – ident: ref12 doi: 10.1016/j.automatica.2019.04.032 – ident: ref31 doi: 10.1109/CDC.2005.1583065 – ident: ref24 doi: 10.1016/j.automatica.2017.07.069 – ident: ref32 doi: 10.1109/CDC.2007.4434927 – ident: ref14 doi: 10.1016/j.automatica.2018.06.050 |
SSID | ssj0016441 |
Score | 2.4893775 |
Snippet | We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large... We consider a system of reaction–advection–diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3762 |
SubjectTerms | Actuators Adaptive control Advection Backstepping Contaminants Control theory Decontamination Delay-adaptive control Delays Diffusion distributed input delay Equivalence principle Feedback control Kernel partial differential equation (PDE) backstepping Partial differential equations predictor feedback reaction–advection–diffusion PDE Surface contamination Surface treatment Thermal stability Time lag |
Title | Delay-Adaptive Predictor Feedback Control of Reaction-Advection-Diffusion PDEs With a Delayed Distributed Input |
URI | https://ieeexplore.ieee.org/document/9528941 https://www.proquest.com/docview/2681963129 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZYn7aHAYNphTL5YS9IuI2dpHEeq_4Qm8RUISr6Fjn2WUOgtoLkAf56fHYaAZsmXiI_2JGl73zn8919R8gPI2KbKq5YbiSwxAkNk4rHLMkymUJskthzd178Hp4vkl_LdLlDztpaGADwyWfQx6GP5Zu1rvGpbJCnzj3AKvUPznELtVptxADtetC67gAL2YYko3xwNRo7R1DwPrJgply8MkG-p8pfithbl9kuudjuKySV3PbrquzrpzeUje_d-B753Fwz6SjIxT7ZgdUX8ukF-eABWU_gTj2ykVEbVHl0fo8xG-eC05mzaKXSt3Qc8tjp2tJLCBUQDDs4h9HkxtoaH9vofDJ9oNc31R-qqP8rGDpBRl5spuXGP1ebujoki9n0anzOmvYLTIucV8wGMqw8hkyryHIkotcOPhvZSIIsM6NEWgpR6jIyQ2vdHGf5sDbVSJEYHn8lndV6Bd-wMByiXLtvLMpkGGV5xgG0Au3cT64y2SWDLSKFbrjJsUXGXeF9lCgvHIYFYlg0GHbJabtiE3g5_jP3ACFp5zVodElvC3rRHNyHQgwl6iR3Czr696pj8lFgBYTP2O2RTnVfw4m7l1Tldy-Qzw8P3hw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLamcQAOYzDQCtvwgQsSbmMnaZxj1R_qoJ0m1IndIsd-1qZWbbUlB_jr8bPTCMY0cYl8sCNLn_2en_2-7xHyyYjYpoorlhsJLHGLhknFY5ZkmUwhNknstTvnF_3pVfL1Or3eI19aLgwA-OQz6GLTv-Wbja7xqqyXpy48QJb6sxTJuIGt1b4ZoGcPdtdtYSHbR8ko7y0GQxcKCt5FHcyUi7-ckK-q8o8p9v5l8orMdzMLaSXLbl2VXf3rgWjj_079kBw0B006CCvjNdmD9Rvy8g_5wSOyGcFK_WQDo7Zo9OjlHb7auCCcTpxPK5Ve0mHIZKcbS79D4EAwrOEcWqNba2u8bqOXo_E9_XFb3VBF_V_B0BFq8mI5Ldc-X2_r6i25mowXwylrCjAwLXJeMRvksPIYMq0iy1GKXjsAbWQjCbLMjBJpKUSpy8j0rXV9nO9DdqqRIjE8fkf215s1HCM1HKJcu28syqQfZXnGAbQC7QJQrjLZIb0dIoVu1MmxSMaq8FFKlBcOwwIxLBoMO-RzO2IblDme6HuEkLT9GjQ65GQHetFs3ftC9CVaJXcOev_4qI_k-XQxnxWz84tvH8gLgXwIn797QvaruxpO3SmlKs_84vwNynnhZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-Adaptive+Predictor+Feedback+Control+of+Reaction-Advection-Diffusion+PDEs+With+a+Delayed+Distributed+Input&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Wang%2C+Shanshan&rft.au=Diagne%2C+Mamadou&rft.au=Qi%2C+Jie&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=67&rft.issue=7&rft.spage=3762&rft.epage=3769&rft_id=info:doi/10.1109%2FTAC.2021.3109512&rft.externalDocID=9528941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |