Delay-Adaptive Predictor Feedback Control of Reaction-Advection-Diffusion PDEs With a Delayed Distributed Input

We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-lo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 67; no. 7; pp. 3762 - 3769
Main Authors Wang, Shanshan, Diagne, Mamadou, Qi, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2021.3109512

Cover

Loading…
Abstract We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction-advection-diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach.
AbstractList We consider a system of reaction–advection–diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the [Formula Omitted] sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction–advection–diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the [Formula Omitted] sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach.
We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction-advection-diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach.
Author Wang, Shanshan
Diagne, Mamadou
Qi, Jie
Author_xml – sequence: 1
  givenname: Shanshan
  orcidid: 0000-0002-3723-8958
  surname: Wang
  fullname: Wang, Shanshan
  email: wss_dhu@126.com
  organization: Rensselaer Polytechnic Institute, Troy, NY, USA
– sequence: 2
  givenname: Mamadou
  orcidid: 0000-0001-5597-7669
  surname: Diagne
  fullname: Diagne, Mamadou
  email: controlatdiagne@gmail.com
  organization: Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
– sequence: 3
  givenname: Jie
  orcidid: 0000-0001-6565-7984
  surname: Qi
  fullname: Qi, Jie
  email: jieqi@dhu.edu.cn
  organization: College of Information Science and Technology, Engineering Research Center of Digitized Textile and Fashion Technology of Ministry Education, Donghua University, Shanghai, China
BookMark eNp9kE1rGzEQhkVJoI6Te6EXQc_raLS7Wulo7KQ1GBJCQo6LVhpRpe7KlbQB__vKdeghh5zmHXg_4LkgZ2MYkZAvwBYATF0_LlcLzjgs6vK1wD-RGbStrHjL6zMyYwxkpbgUn8lFSi_lFU0DMxLWuNOHamn1PvtXpPcRrTc5RHqLaAdtftFVGHMMOxocfUBtsg9j8b_iSa29c1Mqit6vbxJ99vkn1fRfK1q69ilHP0y56M24n_IlOXd6l_Dq7c7J0-3N4-pHtb37vlktt5XhCnLlJDRMdarGzmjmoBGiMVhbxxyTKIfOat4OnA9mYFY4Vzyikx3UjZW8sVDPybdT7z6GPxOm3L-EKY5lsudCghI1cFVc7OQyMaQU0fX76H_reOiB9UesfcHaH7H2b1hLRLyLGJ_1EUWO2u8-Cn49BT0i_t9RLZeqgfovOkKGoQ
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111645
crossref_primary_10_1109_TAC_2022_3144609
crossref_primary_10_1109_TAC_2024_3399629
crossref_primary_10_1016_j_automatica_2024_111784
crossref_primary_10_1002_rnc_7504
crossref_primary_10_1016_j_automatica_2023_111235
crossref_primary_10_1016_j_automatica_2025_112266
crossref_primary_10_1016_j_ifacol_2025_01_070
crossref_primary_10_1002_rnc_7257
crossref_primary_10_1016_j_automatica_2023_111242
crossref_primary_10_1080_00207721_2022_2056654
crossref_primary_10_1109_LCSYS_2025_3541465
Cites_doi 10.1016/j.automatica.2017.10.006
10.1016/j.mspro.2014.07.099
10.1109/CDC.2018.8619657
10.1016/j.automatica.2020.109364
10.1137/1.9781611975758.15
10.1115/1.4046154
10.1109/ACC.2009.5159839
10.1109/TAC.2008.927798
10.1109/TAC.2009.2034923
10.1016/j.sysconle.2009.08.006
10.1109/CAC.2017.8244067
10.1016/j.automatica.2015.01.032
10.1016/j.automatica.2008.04.013
10.1515/9781400835362
10.1109/TAC.2018.2849560
10.1137/1.9780898718607
10.1126/science.1179047
10.1109/TAC.2002.800737
10.1109/ACC.2015.7170909
10.1109/TAC.2015.2491718
10.1109/CCDC.2011.5968195
10.1080/00207179.2017.1314551
10.1016/j.automatica.2016.02.006
10.1007/s00498-003-0128-6
10.1137/15M1034325
10.1109/TAC.2017.2702103
10.1016/j.automatica.2017.04.022
10.1007/BF00934533
10.1007/978-1-4612-5561-1
10.1109/ACC.2008.4587273
10.1109/ICARCV.2010.5707365
10.1109/TAC.2016.2590506
10.1109/ICNSC.2006.1673126
10.1016/j.automatica.2019.04.032
10.1109/CDC.2005.1583065
10.1016/j.automatica.2017.07.069
10.1109/CDC.2007.4434927
10.1016/j.automatica.2018.06.050
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2021.3109512
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3769
ExternalDocumentID 10_1109_TAC_2021_3109512
9528941
Genre orig-research
GrantInformation_xml – fundername: USA National Science Foundation CAREER
  grantid: CMMI-1944051
– fundername: Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University
  grantid: CUSF-DH-D-2018098
– fundername: State Key Laboratory of Synthetical Automation for Process Industries
  funderid: 10.13039/501100011248
– fundername: National Natural Science Foundation of China
  grantid: 61773112; 62173084
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f81409793e7ca0f14664ce3df0f08e8b7da25b22bcb0d6ffa0f6787134d824d13
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:18:30 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 03:36:39 EDT 2025
Wed Aug 27 02:23:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f81409793e7ca0f14664ce3df0f08e8b7da25b22bcb0d6ffa0f6787134d824d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6565-7984
0000-0002-3723-8958
0000-0001-5597-7669
PQID 2681963129
PQPubID 85475
PageCount 8
ParticipantIDs ieee_primary_9528941
proquest_journals_2681963129
crossref_primary_10_1109_TAC_2021_3109512
crossref_citationtrail_10_1109_TAC_2021_3109512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Pazy (ref34) 1983
References_xml – ident: ref17
  doi: 10.1016/j.automatica.2017.10.006
– ident: ref37
  doi: 10.1016/j.mspro.2014.07.099
– ident: ref19
  doi: 10.1109/CDC.2018.8619657
– ident: ref18
  doi: 10.1016/j.automatica.2020.109364
– ident: ref20
  doi: 10.1137/1.9781611975758.15
– ident: ref38
  doi: 10.1115/1.4046154
– ident: ref33
  doi: 10.1109/ACC.2009.5159839
– ident: ref35
  doi: 10.1109/TAC.2008.927798
– ident: ref22
  doi: 10.1109/TAC.2009.2034923
– ident: ref11
  doi: 10.1016/j.sysconle.2009.08.006
– ident: ref27
  doi: 10.1109/CAC.2017.8244067
– ident: ref9
  doi: 10.1016/j.automatica.2015.01.032
– ident: ref5
  doi: 10.1016/j.automatica.2008.04.013
– ident: ref36
  doi: 10.1515/9781400835362
– ident: ref13
  doi: 10.1109/TAC.2018.2849560
– ident: ref28
  doi: 10.1137/1.9780898718607
– ident: ref3
  doi: 10.1126/science.1179047
– ident: ref1
  doi: 10.1109/TAC.2002.800737
– ident: ref29
  doi: 10.1109/ACC.2015.7170909
– ident: ref7
  doi: 10.1109/TAC.2015.2491718
– ident: ref23
  doi: 10.1109/CCDC.2011.5968195
– ident: ref2
  doi: 10.1080/00207179.2017.1314551
– ident: ref16
  doi: 10.1016/j.automatica.2016.02.006
– ident: ref6
  doi: 10.1007/s00498-003-0128-6
– ident: ref10
  doi: 10.1137/15M1034325
– ident: ref25
  doi: 10.1109/TAC.2017.2702103
– ident: ref15
  doi: 10.1016/j.automatica.2017.04.022
– ident: ref4
  doi: 10.1007/BF00934533
– volume-title: Semigroups of Linear Operators and Applications to Partial Differential Equations
  year: 1983
  ident: ref34
  doi: 10.1007/978-1-4612-5561-1
– ident: ref21
  doi: 10.1109/ACC.2008.4587273
– ident: ref26
  doi: 10.1109/ICARCV.2010.5707365
– ident: ref8
  doi: 10.1109/TAC.2016.2590506
– ident: ref30
  doi: 10.1109/ICNSC.2006.1673126
– ident: ref12
  doi: 10.1016/j.automatica.2019.04.032
– ident: ref31
  doi: 10.1109/CDC.2005.1583065
– ident: ref24
  doi: 10.1016/j.automatica.2017.07.069
– ident: ref32
  doi: 10.1109/CDC.2007.4434927
– ident: ref14
  doi: 10.1016/j.automatica.2018.06.050
SSID ssj0016441
Score 2.4893775
Snippet We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large...
We consider a system of reaction–advection–diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3762
SubjectTerms Actuators
Adaptive control
Advection
Backstepping
Contaminants
Control theory
Decontamination
Delay-adaptive control
Delays
Diffusion
distributed input delay
Equivalence principle
Feedback control
Kernel
partial differential equation (PDE) backstepping
Partial differential equations
predictor feedback
reaction–advection–diffusion PDE
Surface contamination
Surface treatment
Thermal stability
Time lag
Title Delay-Adaptive Predictor Feedback Control of Reaction-Advection-Diffusion PDEs With a Delayed Distributed Input
URI https://ieeexplore.ieee.org/document/9528941
https://www.proquest.com/docview/2681963129
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELZYn7aHAYNphTL5YS9IuI2dpHEeq_4Qm8RUISr6Fjn2WUOgtoLkAf56fHYaAZsmXiI_2JGl73zn8919R8gPI2KbKq5YbiSwxAkNk4rHLMkymUJskthzd178Hp4vkl_LdLlDztpaGADwyWfQx6GP5Zu1rvGpbJCnzj3AKvUPznELtVptxADtetC67gAL2YYko3xwNRo7R1DwPrJgply8MkG-p8pfithbl9kuudjuKySV3PbrquzrpzeUje_d-B753Fwz6SjIxT7ZgdUX8ukF-eABWU_gTj2ykVEbVHl0fo8xG-eC05mzaKXSt3Qc8tjp2tJLCBUQDDs4h9HkxtoaH9vofDJ9oNc31R-qqP8rGDpBRl5spuXGP1ebujoki9n0anzOmvYLTIucV8wGMqw8hkyryHIkotcOPhvZSIIsM6NEWgpR6jIyQ2vdHGf5sDbVSJEYHn8lndV6Bd-wMByiXLtvLMpkGGV5xgG0Au3cT64y2SWDLSKFbrjJsUXGXeF9lCgvHIYFYlg0GHbJabtiE3g5_jP3ACFp5zVodElvC3rRHNyHQgwl6iR3Czr696pj8lFgBYTP2O2RTnVfw4m7l1Tldy-Qzw8P3hw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLamcQAOYzDQCtvwgQsSbmMnaZxj1R_qoJ0m1IndIsd-1qZWbbUlB_jr8bPTCMY0cYl8sCNLn_2en_2-7xHyyYjYpoorlhsJLHGLhknFY5ZkmUwhNknstTvnF_3pVfL1Or3eI19aLgwA-OQz6GLTv-Wbja7xqqyXpy48QJb6sxTJuIGt1b4ZoGcPdtdtYSHbR8ko7y0GQxcKCt5FHcyUi7-ckK-q8o8p9v5l8orMdzMLaSXLbl2VXf3rgWjj_079kBw0B006CCvjNdmD9Rvy8g_5wSOyGcFK_WQDo7Zo9OjlHb7auCCcTpxPK5Ve0mHIZKcbS79D4EAwrOEcWqNba2u8bqOXo_E9_XFb3VBF_V_B0BFq8mI5Ldc-X2_r6i25mowXwylrCjAwLXJeMRvksPIYMq0iy1GKXjsAbWQjCbLMjBJpKUSpy8j0rXV9nO9DdqqRIjE8fkf215s1HCM1HKJcu28syqQfZXnGAbQC7QJQrjLZIb0dIoVu1MmxSMaq8FFKlBcOwwIxLBoMO-RzO2IblDme6HuEkLT9GjQ65GQHetFs3ftC9CVaJXcOev_4qI_k-XQxnxWz84tvH8gLgXwIn797QvaruxpO3SmlKs_84vwNynnhZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-Adaptive+Predictor+Feedback+Control+of+Reaction-Advection-Diffusion+PDEs+With+a+Delayed+Distributed+Input&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Wang%2C+Shanshan&rft.au=Diagne%2C+Mamadou&rft.au=Qi%2C+Jie&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=67&rft.issue=7&rft.spage=3762&rft.epage=3769&rft_id=info:doi/10.1109%2FTAC.2021.3109512&rft.externalDocID=9528941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon