Delay-Adaptive Predictor Feedback Control of Reaction-Advection-Diffusion PDEs With a Delayed Distributed Input
We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-lo...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 7; pp. 3762 - 3769 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider a system of reaction-advection-diffusion partial differential equation (PDE) with a distributed input subject to an unknown and arbitrarily large time delay. Using Lyapunov technique, we derive a delay-adaptive predictor feedback controller to ensure the global stability of the closed-loop system in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. More precisely, we express the input delay as a 1-D transport PDE with a spatial argument leading to the transformation of the time delay into a spatially distributed shift. For the resulting mixed transport and reaction-advection-diffusion PDE system, we employ a PDE backstepping design and certainty equivalence principle to derive the suitable adaptive control law that compensates for the effect of the unknown time delay. Our controller ensures the global stabilization in the <inline-formula><tex-math notation="LaTeX">L^2</tex-math></inline-formula> sense. Our result is the first delay-adaptive predictor feedback controller with a PDE plant subject to a delayed distributed input. The feasibility of the proposed approach is illustrated by considering a mobile robot that spread a neutralizer over a polluted surface to achieve efficient decontamination with an unknown actuator delay arising from the noncollocation of the contaminant diffusive process and the moving neutralizer source. Consistent simulation results are presented to prove the effectiveness of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2021.3109512 |