A New Varying-Parameter Convergent-Differential Neural-Network for Solving Time-Varying Convex QP Problem Constrained by Linear-Equality
To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural ne...
Saved in:
Published in | IEEE transactions on automatic control Vol. 63; no. 12; pp. 4110 - 4125 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2018.2810039 |
Cover
Loading…
Abstract | To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN. |
---|---|
AbstractList | To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN. |
Author | Li, Yuanqing Li, Shuai Lu, Yeyun Zheng, Lunan Zhang, Zhijun Yu, Zhuliang |
Author_xml | – sequence: 1 givenname: Zhijun orcidid: 0000-0002-6859-3426 surname: Zhang fullname: Zhang, Zhijun email: auzjzhang@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology – sequence: 2 givenname: Yeyun orcidid: 0000-0002-8307-8537 surname: Lu fullname: Lu, Yeyun email: 961516769@qq.com organization: School of Automation Science and Engineering, South China University of Technology – sequence: 3 givenname: Lunan orcidid: 0000-0002-7671-6051 surname: Zheng fullname: Zheng, Lunan email: aulnzheng@sina.com organization: School of Automation Science and Engineering, South China University of Technology – sequence: 4 givenname: Shuai orcidid: 0000-0001-8316-5289 surname: Li fullname: Li, Shuai email: shuaili@polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong – sequence: 5 givenname: Zhuliang orcidid: 0000-0002-5502-8321 surname: Yu fullname: Yu, Zhuliang email: zlyu@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology – sequence: 6 givenname: Yuanqing orcidid: 0000-0002-9536-9884 surname: Li fullname: Li, Yuanqing email: auyqli@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology |
BookMark | eNp9kMtOwzAQRS0EEuWxR2JjibWLH4njLKvylCooorCNHGeMDGkMjlvoH_DZuGrFggUrj-17ZjTnAO12vgOEThgdMkbL89loPOSUqSFXjFJR7qABy3NFeM7FLhrQ9EVKruQ-Ouj713SVWcYG6HuE7-ATP-uwct0Lmeqg5xAh4LHvlhBeoIvkwlkLIVVOtym9CLoldxA_fXjD1gf86NtlgvHMzYFsO234L_wwxdPg6xbm65c-Bu06aHC9wpNU6EAuPxa6dXF1hPasbns43p6H6Onqcja-IZP769vxaEIML1kkVshCmtrWkAlbc0lNLk2WZ7qBojCi4Nw0DUDRgGDC0JxZrspcS8tK26jk4hCdbfq-B_-xgD5Wr34RujSy4ixTgknFVErJTcoE3_cBbGVc1NH5br1BWzFara1XyXq1tl5trSeQ_gHfg5snJ_8hpxvEAcBvXAnKy7TDD2TDkNU |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_neucom_2022_03_026 crossref_primary_10_1109_TNNLS_2024_3350335 crossref_primary_10_1016_j_jfranklin_2022_02_028 crossref_primary_10_1109_TCYB_2021_3051261 crossref_primary_10_1109_TSMC_2023_3285945 crossref_primary_10_1109_TNNLS_2021_3115698 crossref_primary_10_1016_j_chaos_2022_113059 crossref_primary_10_1016_j_neucom_2021_05_037 crossref_primary_10_1109_TNNLS_2022_3201198 crossref_primary_10_1109_ACCESS_2019_2938840 crossref_primary_10_1016_j_jfranklin_2022_02_022 crossref_primary_10_3389_fnbot_2022_1022887 crossref_primary_10_1016_j_eswa_2023_121559 crossref_primary_10_1109_TSMC_2019_2920778 crossref_primary_10_1109_TFUZZ_2021_3122242 crossref_primary_10_1016_j_neucom_2024_128384 crossref_primary_10_1109_TNNLS_2023_3270563 crossref_primary_10_1109_TSMC_2024_3370636 crossref_primary_10_1016_j_neucom_2020_01_027 crossref_primary_10_1109_TETCI_2024_3352417 crossref_primary_10_1109_TVT_2021_3083608 crossref_primary_10_3390_math11030600 crossref_primary_10_1049_cth2_12680 crossref_primary_10_1109_TFUZZ_2022_3152077 crossref_primary_10_1016_j_neucom_2018_10_054 crossref_primary_10_1016_j_neucom_2022_03_010 crossref_primary_10_1109_TNNLS_2023_3263975 crossref_primary_10_3389_fnbot_2019_00060 crossref_primary_10_1080_10556788_2019_1594806 crossref_primary_10_1016_j_neucom_2021_01_083 crossref_primary_10_1016_j_neunet_2023_06_021 crossref_primary_10_1109_TII_2019_2897803 crossref_primary_10_1016_j_neucom_2021_11_012 crossref_primary_10_1038_s41598_021_95537_y crossref_primary_10_1109_TNNLS_2021_3083710 crossref_primary_10_1016_j_neucom_2021_05_096 crossref_primary_10_1016_j_neunet_2023_08_047 crossref_primary_10_1007_s00521_024_10922_8 crossref_primary_10_1007_s00521_022_07581_y crossref_primary_10_3389_fnbot_2018_00086 crossref_primary_10_1016_j_neucom_2019_10_101 crossref_primary_10_3390_math12132090 crossref_primary_10_1007_s11042_024_19032_y crossref_primary_10_1007_s11063_019_10107_8 crossref_primary_10_1109_THMS_2019_2904615 crossref_primary_10_1007_s11042_023_17944_9 crossref_primary_10_1109_TSMC_2022_3160158 crossref_primary_10_1016_j_neucom_2024_128203 crossref_primary_10_1007_s10462_022_10284_4 crossref_primary_10_1109_TNNLS_2023_3253801 crossref_primary_10_1016_j_neucom_2020_01_070 crossref_primary_10_1109_TCYB_2024_3398585 crossref_primary_10_1016_j_neucom_2024_129252 crossref_primary_10_1016_j_eswa_2024_125893 crossref_primary_10_1109_TII_2023_3241683 crossref_primary_10_1109_TASE_2024_3351197 crossref_primary_10_1109_TCYB_2019_2923642 crossref_primary_10_1016_j_neucom_2019_10_050 crossref_primary_10_1017_S0263574721000047 crossref_primary_10_1007_s11063_019_10141_6 crossref_primary_10_1109_TNNLS_2022_3144222 crossref_primary_10_1109_TCYB_2021_3111204 crossref_primary_10_1109_TSMC_2020_2998485 crossref_primary_10_3390_math13060954 crossref_primary_10_1109_TCSI_2022_3153560 crossref_primary_10_1109_TII_2022_3206761 crossref_primary_10_1109_TFUZZ_2019_2914618 crossref_primary_10_1109_TFUZZ_2021_3115969 crossref_primary_10_1017_S0263574719000821 crossref_primary_10_1109_TNNLS_2023_3263263 crossref_primary_10_1016_j_amc_2021_126760 crossref_primary_10_1016_j_energy_2022_124131 crossref_primary_10_1109_TSMC_2020_3018756 crossref_primary_10_1109_TII_2020_3047959 crossref_primary_10_1109_TSMC_2023_3331051 crossref_primary_10_1109_TSMC_2021_3138550 crossref_primary_10_1016_j_neunet_2024_106339 crossref_primary_10_1007_s11042_024_18786_9 crossref_primary_10_1109_ACCESS_2024_3364377 crossref_primary_10_1109_TII_2021_3129526 crossref_primary_10_1109_TNNLS_2019_2934734 crossref_primary_10_1016_j_neucom_2022_11_067 crossref_primary_10_1007_s11063_023_11389_9 crossref_primary_10_1016_j_neunet_2019_05_005 crossref_primary_10_1109_TITS_2021_3115153 crossref_primary_10_1016_j_neucom_2019_04_002 crossref_primary_10_1016_j_bspc_2021_103130 crossref_primary_10_1109_ACCESS_2021_3068731 crossref_primary_10_1109_TITS_2020_2983522 crossref_primary_10_1109_ACCESS_2019_2899587 crossref_primary_10_1007_s11075_020_01061_x crossref_primary_10_1109_TCYB_2021_3104138 crossref_primary_10_1109_TAC_2021_3128470 crossref_primary_10_3390_math12243891 crossref_primary_10_1109_ACCESS_2020_3029066 crossref_primary_10_1109_TSMC_2019_2930763 crossref_primary_10_1109_TCSII_2023_3313554 crossref_primary_10_1016_j_matcom_2023_01_012 crossref_primary_10_1109_TAC_2022_3144135 crossref_primary_10_1109_TNNLS_2020_3009201 crossref_primary_10_1109_TCDS_2021_3054999 crossref_primary_10_1007_s00521_023_09264_8 crossref_primary_10_1109_TAC_2022_3223323 crossref_primary_10_1109_TNNLS_2021_3071404 crossref_primary_10_1109_TAC_2023_3319132 crossref_primary_10_1016_j_neucom_2025_129778 crossref_primary_10_1016_j_neucom_2020_07_025 crossref_primary_10_1016_j_neucom_2019_11_101 crossref_primary_10_1109_TIE_2022_3198255 crossref_primary_10_1016_j_jfranklin_2022_01_030 crossref_primary_10_1016_j_neunet_2024_106556 crossref_primary_10_1109_TCYB_2022_3151709 crossref_primary_10_1109_TETCI_2024_3377678 crossref_primary_10_1109_TNNLS_2021_3082950 crossref_primary_10_1109_TSMC_2020_3020145 crossref_primary_10_1007_s11042_024_19674_y crossref_primary_10_1016_j_jfranklin_2023_09_022 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_1109_TII_2021_3087202 crossref_primary_10_1109_TAC_2019_2921681 crossref_primary_10_1080_01605682_2022_2096501 crossref_primary_10_1016_j_neucom_2019_08_085 crossref_primary_10_1109_TII_2021_3049413 crossref_primary_10_3390_photonics10020177 crossref_primary_10_1109_TII_2024_3361015 crossref_primary_10_1016_j_neunet_2024_106968 crossref_primary_10_1007_s00521_020_05356_x crossref_primary_10_1016_j_neucom_2021_07_036 crossref_primary_10_1109_TII_2024_3452245 |
Cites_doi | 10.1016/j.neucom.2005.11.006 10.1109/CDC.2003.1272262 10.1137/S0363012900373483 10.1109/TNN.2008.2005301 10.1016/j.neucom.2008.07.008 10.1007/978-3-642-37518-7 10.1109/TCST.2014.2354981 10.1109/TAC.2016.2525928 10.1017/CBO9780511804441 10.1109/TSMCB.2012.2189003 10.1088/1751-8113/43/24/245202 10.1109/TMM.2015.2477682 10.1109/TNNLS.2015.2469147 10.1109/TNNLS.2014.2345734 10.1016/j.neucom.2015.11.014 10.1109/TAC.2016.2562062 10.1080/03610910601161298 10.1016/j.physleta.2006.08.073 10.1016/S0375-9601(02)00424-3 10.1109/TCYB.2014.2351416 10.1109/TAC.2015.2423871 10.1007/s00521-014-1744-4 10.1049/el:19920854 10.1007/978-1-4613-1639-8_10 10.1016/j.physleta.2009.03.011 10.1109/59.736232 10.1142/9789812562531_0020 10.1109/TCST.2003.821952 10.1109/TNN.2002.1000129 10.1007/978-3-540-87732-5_14 10.1109/TNN.2002.1031938 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2018.2810039 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 4125 |
ExternalDocumentID | 10_1109_TAC_2018_2810039 8302931 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Foundation for Distinguished Young Scholars grantid: 2017A030306009 – fundername: Scientific Research Starting Foundation of South China University of Technology, National Key Basic Research Program of China (973 Program) grantid: 2015CB351703 funderid: 10.13039/501100005015 – fundername: National Key R&D Program of China grantid: 2017YFB1002505 – fundername: Fundamental Research Funds for Central Universities grantid: 2017MS049 – fundername: Science and Technology Program of Guangzhou grantid: 201707010225 – fundername: Guangdong Natural Science Foundation grantid: 2014A030312005 funderid: 10.13039/501100003453 – fundername: National Natural Science Foundation grantid: 61603142; 61633010 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-f3676cbfbe43fb260c56c454ade77c3722cddee7de313c051f2895a6f19fd8523 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:12:39 EDT 2025 Tue Jul 01 03:36:23 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Aug 27 02:51:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-f3676cbfbe43fb260c56c454ade77c3722cddee7de313c051f2895a6f19fd8523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6859-3426 0000-0001-8316-5289 0000-0002-7671-6051 0000-0002-5502-8321 0000-0002-9536-9884 0000-0002-8307-8537 |
PQID | 2148316818 |
PQPubID | 85475 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TAC_2018_2810039 proquest_journals_2148316818 crossref_citationtrail_10_1109_TAC_2018_2810039 ieee_primary_8302931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 chen (ref37) 1998 xu (ref35) 2001 ref23 ref26 nocedal (ref30) 1999 hsieh (ref36) 2012 zhang (ref25) 0; 6 zhang (ref34) 2007 ref22 ref21 wang (ref31) 2004 ref28 ref27 mordatch (ref20) 0 ref29 ref8 ref7 zhang (ref24) 0 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref7 doi: 10.1016/j.neucom.2005.11.006 – volume: 6 start-page: 6169 year: 0 ident: ref25 article-title: A general recurrent neural network model for time-varying matrix inversion publication-title: Proc 42nd IEEE Conf Decis Control doi: 10.1109/CDC.2003.1272262 – ident: ref12 doi: 10.1137/S0363012900373483 – ident: ref16 doi: 10.1109/TNN.2008.2005301 – ident: ref8 doi: 10.1016/j.neucom.2008.07.008 – ident: ref38 doi: 10.1007/978-3-642-37518-7 – ident: ref19 doi: 10.1109/TCST.2014.2354981 – ident: ref1 doi: 10.1109/TAC.2016.2525928 – ident: ref4 doi: 10.1017/CBO9780511804441 – year: 2001 ident: ref35 publication-title: Matrix Theory Tutorial – start-page: 1 year: 0 ident: ref24 article-title: The link between newton iteration for matrix inversion and Zhang neural network (ZNN) publication-title: Proc IEEE Int Conf Ind Technol – ident: ref6 doi: 10.1109/TSMCB.2012.2189003 – ident: ref27 doi: 10.1088/1751-8113/43/24/245202 – ident: ref5 doi: 10.1109/TMM.2015.2477682 – ident: ref9 doi: 10.1109/TNNLS.2015.2469147 – year: 1999 ident: ref30 article-title: Springer series in operations research and financial engineering publication-title: Numerical Optimization – start-page: 41 year: 2007 ident: ref34 article-title: Dual neural networks: Design, analysis, and application to redundant robotics publication-title: Progress in Neurocomputing Research – ident: ref18 doi: 10.1109/TNNLS.2014.2345734 – ident: ref29 doi: 10.1016/j.neucom.2015.11.014 – ident: ref2 doi: 10.1109/TAC.2016.2562062 – ident: ref14 doi: 10.1080/03610910601161298 – ident: ref15 doi: 10.1016/j.physleta.2006.08.073 – ident: ref17 doi: 10.1016/S0375-9601(02)00424-3 – ident: ref10 doi: 10.1109/TCYB.2014.2351416 – ident: ref3 doi: 10.1109/TAC.2015.2423871 – ident: ref28 doi: 10.1007/s00521-014-1744-4 – ident: ref22 doi: 10.1049/el:19920854 – ident: ref33 doi: 10.1007/978-1-4613-1639-8_10 – year: 2012 ident: ref36 publication-title: Basic Theory of Ordinary Differential Equations – ident: ref21 doi: 10.1016/j.physleta.2009.03.011 – ident: ref11 doi: 10.1109/59.736232 – start-page: 3114 year: 0 ident: ref20 article-title: Interactive control of diverse complex characters with neural networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 299 year: 2004 ident: ref31 article-title: Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators publication-title: Machine Intelligence Quo Vadis doi: 10.1142/9789812562531_0020 – ident: ref13 doi: 10.1109/TCST.2003.821952 – ident: ref23 doi: 10.1109/TNN.2002.1000129 – ident: ref32 doi: 10.1007/978-3-540-87732-5_14 – year: 1998 ident: ref37 publication-title: Matrix Theory An Introduction – ident: ref26 doi: 10.1109/TNN.2002.1031938 |
SSID | ssj0016441 |
Score | 2.6056592 |
Snippet | To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4110 |
SubjectTerms | Biological neural networks Computer simulation Convergence Convergence and robustness Design parameters Mathematical model Neural networks Perturbation methods quadratic programming Recurrent neural networks Robustness time-varying |
Title | A New Varying-Parameter Convergent-Differential Neural-Network for Solving Time-Varying Convex QP Problem Constrained by Linear-Equality |
URI | https://ieeexplore.ieee.org/document/8302931 https://www.proquest.com/docview/2148316818 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66Jz34FldXycGLYHY3abttj8uqiKCs-MBbSdLJxWVX1i6ov8Cf7UzTLb4Qb6V0Qug8ki_5ZoaxQxNLJQHQeFMJAvGGEkYSxUoFoY0i7QJTsnyveud34cVD9LDAjutcGAAoyWfQpsfyLj-f2BkdlXWoVlVKSdOLCNx8rlZ9Y0Druo-66MAqqa8ku2nntj8gDlfSVomkXNQvS1DZU-VHIC5Xl7NVdjmflyeVPLZnhWnbt28lG_878TW2Um0zed_bxTpbgPEGW_5UfHCTvfc5Rjh-r6eU6SSGmmha-Jf5gIjolJNZiJOqfQqGgRGnOh56JK48cZzjbpffTEZ0IMEpkURUI3n5F3495EPfrYbePJe9KCDn5pUj_kX_Eqc-ofN1i92dnd4OzkXVl0FYlcpCOKryZo0zEAbOICCyUc-GUahziGMbxEpZDJoQ5xDIwKLXO0R1ke45mbo8QeS7zRrjyRh2GHc2DxxERqcEVHPQXZtrnaQKRXCjKZusM1dVZqui5TTfUVaCl26aoXIzUm5WKbfJjmqJJ1-w449vN0lX9XeVmpqsNbeGrPLo50whbqQmXzLZ_V1qjy3R2J7q0mKNYjqDfdywFOagtNQPeTHojQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V7QE4UKAg0gfdAxckNsmu7dg-Rmmr9BWlIkW9Wbvr2QtRglpHavkF_OzOeB0LCkLcLMtjrzyP3dn9vhmAjzZVWiGS8eYKJeUbWlrFECsdxS5JjI9sjfKdDMbX8dlNcrMBn1suDCLW4DPs8mV9ll8u3Yq3ynpcqypn0vRWwmTcwNZqzwx4Zg9xl1xYZ-2hZD_vzYYjRnFlXZ0pZqP-NgnVXVX-CMX1_HKyDZfrkQVYybfuqrJd9-NJ0cb_HforeNksNMUwWMZr2MDFG3jxS_nBHfg5FBTjxFdzy1wnOTUM1KL_LEYMRWdWZiWPmgYqFAjmgit5mLmcBOi4oPWu-LKc85aEYCqJbN4U5O_F1VRMQ78avnNXd6PAUtgHQRkweZg8DpTOh7dwfXI8G41l05lBOp2rSnqu8-astxhH3lJK5JKBi5PYlJimLkq1dhQ2MS0xUpEjv_eU1yVm4FXuy4xy33ewuVgu8D0I78rIY2JNzqlqiabvSmOyXJMILTVVB3prVRWuKVvO450XdfrSzwtSbsHKLRrlduBTK_E9lOz4x7M7rKv2uUZNHdhfW0PR-PRdoSlz5DZfKtv9u9QhPBvPLi-Ki9PJ-R485-8E4Ms-bFa3Kzyg5UtlP9RW-wi64OvV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Varying-Parameter+Convergent-Differential+Neural-Network+for+Solving+Time-Varying+Convex+QP+Problem+Constrained+by+Linear-Equality&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zhang%2C+Zhijun&rft.au=Lu%2C+Yeyun&rft.au=Zheng%2C+Lunan&rft.au=Li%2C+Shuai&rft.date=2018-12-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=63&rft.issue=12&rft.spage=4110&rft.epage=4125&rft_id=info:doi/10.1109%2FTAC.2018.2810039&rft.externalDocID=8302931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |