A New Varying-Parameter Convergent-Differential Neural-Network for Solving Time-Varying Convex QP Problem Constrained by Linear-Equality

To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 63; no. 12; pp. 4110 - 4125
Main Authors Zhang, Zhijun, Lu, Yeyun, Zheng, Lunan, Li, Shuai, Yu, Zhuliang, Li, Yuanqing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2018.2810039

Cover

Loading…
Abstract To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN.
AbstractList To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN.
Author Li, Yuanqing
Li, Shuai
Lu, Yeyun
Zheng, Lunan
Zhang, Zhijun
Yu, Zhuliang
Author_xml – sequence: 1
  givenname: Zhijun
  orcidid: 0000-0002-6859-3426
  surname: Zhang
  fullname: Zhang, Zhijun
  email: auzjzhang@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology
– sequence: 2
  givenname: Yeyun
  orcidid: 0000-0002-8307-8537
  surname: Lu
  fullname: Lu, Yeyun
  email: 961516769@qq.com
  organization: School of Automation Science and Engineering, South China University of Technology
– sequence: 3
  givenname: Lunan
  orcidid: 0000-0002-7671-6051
  surname: Zheng
  fullname: Zheng, Lunan
  email: aulnzheng@sina.com
  organization: School of Automation Science and Engineering, South China University of Technology
– sequence: 4
  givenname: Shuai
  orcidid: 0000-0001-8316-5289
  surname: Li
  fullname: Li, Shuai
  email: shuaili@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong
– sequence: 5
  givenname: Zhuliang
  orcidid: 0000-0002-5502-8321
  surname: Yu
  fullname: Yu, Zhuliang
  email: zlyu@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology
– sequence: 6
  givenname: Yuanqing
  orcidid: 0000-0002-9536-9884
  surname: Li
  fullname: Li, Yuanqing
  email: auyqli@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology
BookMark eNp9kMtOwzAQRS0EEuWxR2JjibWLH4njLKvylCooorCNHGeMDGkMjlvoH_DZuGrFggUrj-17ZjTnAO12vgOEThgdMkbL89loPOSUqSFXjFJR7qABy3NFeM7FLhrQ9EVKruQ-Ouj713SVWcYG6HuE7-ATP-uwct0Lmeqg5xAh4LHvlhBeoIvkwlkLIVVOtym9CLoldxA_fXjD1gf86NtlgvHMzYFsO234L_wwxdPg6xbm65c-Bu06aHC9wpNU6EAuPxa6dXF1hPasbns43p6H6Onqcja-IZP769vxaEIML1kkVshCmtrWkAlbc0lNLk2WZ7qBojCi4Nw0DUDRgGDC0JxZrspcS8tK26jk4hCdbfq-B_-xgD5Wr34RujSy4ixTgknFVErJTcoE3_cBbGVc1NH5br1BWzFara1XyXq1tl5trSeQ_gHfg5snJ_8hpxvEAcBvXAnKy7TDD2TDkNU
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_neucom_2022_03_026
crossref_primary_10_1109_TNNLS_2024_3350335
crossref_primary_10_1016_j_jfranklin_2022_02_028
crossref_primary_10_1109_TCYB_2021_3051261
crossref_primary_10_1109_TSMC_2023_3285945
crossref_primary_10_1109_TNNLS_2021_3115698
crossref_primary_10_1016_j_chaos_2022_113059
crossref_primary_10_1016_j_neucom_2021_05_037
crossref_primary_10_1109_TNNLS_2022_3201198
crossref_primary_10_1109_ACCESS_2019_2938840
crossref_primary_10_1016_j_jfranklin_2022_02_022
crossref_primary_10_3389_fnbot_2022_1022887
crossref_primary_10_1016_j_eswa_2023_121559
crossref_primary_10_1109_TSMC_2019_2920778
crossref_primary_10_1109_TFUZZ_2021_3122242
crossref_primary_10_1016_j_neucom_2024_128384
crossref_primary_10_1109_TNNLS_2023_3270563
crossref_primary_10_1109_TSMC_2024_3370636
crossref_primary_10_1016_j_neucom_2020_01_027
crossref_primary_10_1109_TETCI_2024_3352417
crossref_primary_10_1109_TVT_2021_3083608
crossref_primary_10_3390_math11030600
crossref_primary_10_1049_cth2_12680
crossref_primary_10_1109_TFUZZ_2022_3152077
crossref_primary_10_1016_j_neucom_2018_10_054
crossref_primary_10_1016_j_neucom_2022_03_010
crossref_primary_10_1109_TNNLS_2023_3263975
crossref_primary_10_3389_fnbot_2019_00060
crossref_primary_10_1080_10556788_2019_1594806
crossref_primary_10_1016_j_neucom_2021_01_083
crossref_primary_10_1016_j_neunet_2023_06_021
crossref_primary_10_1109_TII_2019_2897803
crossref_primary_10_1016_j_neucom_2021_11_012
crossref_primary_10_1038_s41598_021_95537_y
crossref_primary_10_1109_TNNLS_2021_3083710
crossref_primary_10_1016_j_neucom_2021_05_096
crossref_primary_10_1016_j_neunet_2023_08_047
crossref_primary_10_1007_s00521_024_10922_8
crossref_primary_10_1007_s00521_022_07581_y
crossref_primary_10_3389_fnbot_2018_00086
crossref_primary_10_1016_j_neucom_2019_10_101
crossref_primary_10_3390_math12132090
crossref_primary_10_1007_s11042_024_19032_y
crossref_primary_10_1007_s11063_019_10107_8
crossref_primary_10_1109_THMS_2019_2904615
crossref_primary_10_1007_s11042_023_17944_9
crossref_primary_10_1109_TSMC_2022_3160158
crossref_primary_10_1016_j_neucom_2024_128203
crossref_primary_10_1007_s10462_022_10284_4
crossref_primary_10_1109_TNNLS_2023_3253801
crossref_primary_10_1016_j_neucom_2020_01_070
crossref_primary_10_1109_TCYB_2024_3398585
crossref_primary_10_1016_j_neucom_2024_129252
crossref_primary_10_1016_j_eswa_2024_125893
crossref_primary_10_1109_TII_2023_3241683
crossref_primary_10_1109_TASE_2024_3351197
crossref_primary_10_1109_TCYB_2019_2923642
crossref_primary_10_1016_j_neucom_2019_10_050
crossref_primary_10_1017_S0263574721000047
crossref_primary_10_1007_s11063_019_10141_6
crossref_primary_10_1109_TNNLS_2022_3144222
crossref_primary_10_1109_TCYB_2021_3111204
crossref_primary_10_1109_TSMC_2020_2998485
crossref_primary_10_3390_math13060954
crossref_primary_10_1109_TCSI_2022_3153560
crossref_primary_10_1109_TII_2022_3206761
crossref_primary_10_1109_TFUZZ_2019_2914618
crossref_primary_10_1109_TFUZZ_2021_3115969
crossref_primary_10_1017_S0263574719000821
crossref_primary_10_1109_TNNLS_2023_3263263
crossref_primary_10_1016_j_amc_2021_126760
crossref_primary_10_1016_j_energy_2022_124131
crossref_primary_10_1109_TSMC_2020_3018756
crossref_primary_10_1109_TII_2020_3047959
crossref_primary_10_1109_TSMC_2023_3331051
crossref_primary_10_1109_TSMC_2021_3138550
crossref_primary_10_1016_j_neunet_2024_106339
crossref_primary_10_1007_s11042_024_18786_9
crossref_primary_10_1109_ACCESS_2024_3364377
crossref_primary_10_1109_TII_2021_3129526
crossref_primary_10_1109_TNNLS_2019_2934734
crossref_primary_10_1016_j_neucom_2022_11_067
crossref_primary_10_1007_s11063_023_11389_9
crossref_primary_10_1016_j_neunet_2019_05_005
crossref_primary_10_1109_TITS_2021_3115153
crossref_primary_10_1016_j_neucom_2019_04_002
crossref_primary_10_1016_j_bspc_2021_103130
crossref_primary_10_1109_ACCESS_2021_3068731
crossref_primary_10_1109_TITS_2020_2983522
crossref_primary_10_1109_ACCESS_2019_2899587
crossref_primary_10_1007_s11075_020_01061_x
crossref_primary_10_1109_TCYB_2021_3104138
crossref_primary_10_1109_TAC_2021_3128470
crossref_primary_10_3390_math12243891
crossref_primary_10_1109_ACCESS_2020_3029066
crossref_primary_10_1109_TSMC_2019_2930763
crossref_primary_10_1109_TCSII_2023_3313554
crossref_primary_10_1016_j_matcom_2023_01_012
crossref_primary_10_1109_TAC_2022_3144135
crossref_primary_10_1109_TNNLS_2020_3009201
crossref_primary_10_1109_TCDS_2021_3054999
crossref_primary_10_1007_s00521_023_09264_8
crossref_primary_10_1109_TAC_2022_3223323
crossref_primary_10_1109_TNNLS_2021_3071404
crossref_primary_10_1109_TAC_2023_3319132
crossref_primary_10_1016_j_neucom_2025_129778
crossref_primary_10_1016_j_neucom_2020_07_025
crossref_primary_10_1016_j_neucom_2019_11_101
crossref_primary_10_1109_TIE_2022_3198255
crossref_primary_10_1016_j_jfranklin_2022_01_030
crossref_primary_10_1016_j_neunet_2024_106556
crossref_primary_10_1109_TCYB_2022_3151709
crossref_primary_10_1109_TETCI_2024_3377678
crossref_primary_10_1109_TNNLS_2021_3082950
crossref_primary_10_1109_TSMC_2020_3020145
crossref_primary_10_1007_s11042_024_19674_y
crossref_primary_10_1016_j_jfranklin_2023_09_022
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_1109_TII_2021_3087202
crossref_primary_10_1109_TAC_2019_2921681
crossref_primary_10_1080_01605682_2022_2096501
crossref_primary_10_1016_j_neucom_2019_08_085
crossref_primary_10_1109_TII_2021_3049413
crossref_primary_10_3390_photonics10020177
crossref_primary_10_1109_TII_2024_3361015
crossref_primary_10_1016_j_neunet_2024_106968
crossref_primary_10_1007_s00521_020_05356_x
crossref_primary_10_1016_j_neucom_2021_07_036
crossref_primary_10_1109_TII_2024_3452245
Cites_doi 10.1016/j.neucom.2005.11.006
10.1109/CDC.2003.1272262
10.1137/S0363012900373483
10.1109/TNN.2008.2005301
10.1016/j.neucom.2008.07.008
10.1007/978-3-642-37518-7
10.1109/TCST.2014.2354981
10.1109/TAC.2016.2525928
10.1017/CBO9780511804441
10.1109/TSMCB.2012.2189003
10.1088/1751-8113/43/24/245202
10.1109/TMM.2015.2477682
10.1109/TNNLS.2015.2469147
10.1109/TNNLS.2014.2345734
10.1016/j.neucom.2015.11.014
10.1109/TAC.2016.2562062
10.1080/03610910601161298
10.1016/j.physleta.2006.08.073
10.1016/S0375-9601(02)00424-3
10.1109/TCYB.2014.2351416
10.1109/TAC.2015.2423871
10.1007/s00521-014-1744-4
10.1049/el:19920854
10.1007/978-1-4613-1639-8_10
10.1016/j.physleta.2009.03.011
10.1109/59.736232
10.1142/9789812562531_0020
10.1109/TCST.2003.821952
10.1109/TNN.2002.1000129
10.1007/978-3-540-87732-5_14
10.1109/TNN.2002.1031938
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2018.2810039
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4125
ExternalDocumentID 10_1109_TAC_2018_2810039
8302931
Genre orig-research
GrantInformation_xml – fundername: Guangdong Foundation for Distinguished Young Scholars
  grantid: 2017A030306009
– fundername: Scientific Research Starting Foundation of South China University of Technology, National Key Basic Research Program of China (973 Program)
  grantid: 2015CB351703
  funderid: 10.13039/501100005015
– fundername: National Key R&D Program of China
  grantid: 2017YFB1002505
– fundername: Fundamental Research Funds for Central Universities
  grantid: 2017MS049
– fundername: Science and Technology Program of Guangzhou
  grantid: 201707010225
– fundername: Guangdong Natural Science Foundation
  grantid: 2014A030312005
  funderid: 10.13039/501100003453
– fundername: National Natural Science Foundation
  grantid: 61603142; 61633010
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f3676cbfbe43fb260c56c454ade77c3722cddee7de313c051f2895a6f19fd8523
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:12:39 EDT 2025
Tue Jul 01 03:36:23 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Aug 27 02:51:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f3676cbfbe43fb260c56c454ade77c3722cddee7de313c051f2895a6f19fd8523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6859-3426
0000-0001-8316-5289
0000-0002-7671-6051
0000-0002-5502-8321
0000-0002-9536-9884
0000-0002-8307-8537
PQID 2148316818
PQPubID 85475
PageCount 16
ParticipantIDs crossref_primary_10_1109_TAC_2018_2810039
proquest_journals_2148316818
crossref_citationtrail_10_1109_TAC_2018_2810039
ieee_primary_8302931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
chen (ref37) 1998
xu (ref35) 2001
ref23
ref26
nocedal (ref30) 1999
hsieh (ref36) 2012
zhang (ref25) 0; 6
zhang (ref34) 2007
ref22
ref21
wang (ref31) 2004
ref28
ref27
mordatch (ref20) 0
ref29
ref8
ref7
zhang (ref24) 0
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1016/j.neucom.2005.11.006
– volume: 6
  start-page: 6169
  year: 0
  ident: ref25
  article-title: A general recurrent neural network model for time-varying matrix inversion
  publication-title: Proc 42nd IEEE Conf Decis Control
  doi: 10.1109/CDC.2003.1272262
– ident: ref12
  doi: 10.1137/S0363012900373483
– ident: ref16
  doi: 10.1109/TNN.2008.2005301
– ident: ref8
  doi: 10.1016/j.neucom.2008.07.008
– ident: ref38
  doi: 10.1007/978-3-642-37518-7
– ident: ref19
  doi: 10.1109/TCST.2014.2354981
– ident: ref1
  doi: 10.1109/TAC.2016.2525928
– ident: ref4
  doi: 10.1017/CBO9780511804441
– year: 2001
  ident: ref35
  publication-title: Matrix Theory Tutorial
– start-page: 1
  year: 0
  ident: ref24
  article-title: The link between newton iteration for matrix inversion and Zhang neural network (ZNN)
  publication-title: Proc IEEE Int Conf Ind Technol
– ident: ref6
  doi: 10.1109/TSMCB.2012.2189003
– ident: ref27
  doi: 10.1088/1751-8113/43/24/245202
– ident: ref5
  doi: 10.1109/TMM.2015.2477682
– ident: ref9
  doi: 10.1109/TNNLS.2015.2469147
– year: 1999
  ident: ref30
  article-title: Springer series in operations research and financial engineering
  publication-title: Numerical Optimization
– start-page: 41
  year: 2007
  ident: ref34
  article-title: Dual neural networks: Design, analysis, and application to redundant robotics
  publication-title: Progress in Neurocomputing Research
– ident: ref18
  doi: 10.1109/TNNLS.2014.2345734
– ident: ref29
  doi: 10.1016/j.neucom.2015.11.014
– ident: ref2
  doi: 10.1109/TAC.2016.2562062
– ident: ref14
  doi: 10.1080/03610910601161298
– ident: ref15
  doi: 10.1016/j.physleta.2006.08.073
– ident: ref17
  doi: 10.1016/S0375-9601(02)00424-3
– ident: ref10
  doi: 10.1109/TCYB.2014.2351416
– ident: ref3
  doi: 10.1109/TAC.2015.2423871
– ident: ref28
  doi: 10.1007/s00521-014-1744-4
– ident: ref22
  doi: 10.1049/el:19920854
– ident: ref33
  doi: 10.1007/978-1-4613-1639-8_10
– year: 2012
  ident: ref36
  publication-title: Basic Theory of Ordinary Differential Equations
– ident: ref21
  doi: 10.1016/j.physleta.2009.03.011
– ident: ref11
  doi: 10.1109/59.736232
– start-page: 3114
  year: 0
  ident: ref20
  article-title: Interactive control of diverse complex characters with neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 299
  year: 2004
  ident: ref31
  article-title: Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators
  publication-title: Machine Intelligence Quo Vadis
  doi: 10.1142/9789812562531_0020
– ident: ref13
  doi: 10.1109/TCST.2003.821952
– ident: ref23
  doi: 10.1109/TNN.2002.1000129
– ident: ref32
  doi: 10.1007/978-3-540-87732-5_14
– year: 1998
  ident: ref37
  publication-title: Matrix Theory An Introduction
– ident: ref26
  doi: 10.1109/TNN.2002.1031938
SSID ssj0016441
Score 2.6056592
Snippet To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4110
SubjectTerms Biological neural networks
Computer simulation
Convergence
Convergence and robustness
Design parameters
Mathematical model
Neural networks
Perturbation methods
quadratic programming
Recurrent neural networks
Robustness
time-varying
Title A New Varying-Parameter Convergent-Differential Neural-Network for Solving Time-Varying Convex QP Problem Constrained by Linear-Equality
URI https://ieeexplore.ieee.org/document/8302931
https://www.proquest.com/docview/2148316818
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66Jz34FldXycGLYHY3abttj8uqiKCs-MBbSdLJxWVX1i6ov8Cf7UzTLb4Qb6V0Qug8ki_5ZoaxQxNLJQHQeFMJAvGGEkYSxUoFoY0i7QJTsnyveud34cVD9LDAjutcGAAoyWfQpsfyLj-f2BkdlXWoVlVKSdOLCNx8rlZ9Y0Druo-66MAqqa8ku2nntj8gDlfSVomkXNQvS1DZU-VHIC5Xl7NVdjmflyeVPLZnhWnbt28lG_878TW2Um0zed_bxTpbgPEGW_5UfHCTvfc5Rjh-r6eU6SSGmmha-Jf5gIjolJNZiJOqfQqGgRGnOh56JK48cZzjbpffTEZ0IMEpkURUI3n5F3495EPfrYbePJe9KCDn5pUj_kX_Eqc-ofN1i92dnd4OzkXVl0FYlcpCOKryZo0zEAbOICCyUc-GUahziGMbxEpZDJoQ5xDIwKLXO0R1ke45mbo8QeS7zRrjyRh2GHc2DxxERqcEVHPQXZtrnaQKRXCjKZusM1dVZqui5TTfUVaCl26aoXIzUm5WKbfJjmqJJ1-w449vN0lX9XeVmpqsNbeGrPLo50whbqQmXzLZ_V1qjy3R2J7q0mKNYjqDfdywFOagtNQPeTHojQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V7QE4UKAg0gfdAxckNsmu7dg-Rmmr9BWlIkW9Wbvr2QtRglpHavkF_OzOeB0LCkLcLMtjrzyP3dn9vhmAjzZVWiGS8eYKJeUbWlrFECsdxS5JjI9sjfKdDMbX8dlNcrMBn1suDCLW4DPs8mV9ll8u3Yq3ynpcqypn0vRWwmTcwNZqzwx4Zg9xl1xYZ-2hZD_vzYYjRnFlXZ0pZqP-NgnVXVX-CMX1_HKyDZfrkQVYybfuqrJd9-NJ0cb_HforeNksNMUwWMZr2MDFG3jxS_nBHfg5FBTjxFdzy1wnOTUM1KL_LEYMRWdWZiWPmgYqFAjmgit5mLmcBOi4oPWu-LKc85aEYCqJbN4U5O_F1VRMQ78avnNXd6PAUtgHQRkweZg8DpTOh7dwfXI8G41l05lBOp2rSnqu8-astxhH3lJK5JKBi5PYlJimLkq1dhQ2MS0xUpEjv_eU1yVm4FXuy4xy33ewuVgu8D0I78rIY2JNzqlqiabvSmOyXJMILTVVB3prVRWuKVvO450XdfrSzwtSbsHKLRrlduBTK_E9lOz4x7M7rKv2uUZNHdhfW0PR-PRdoSlz5DZfKtv9u9QhPBvPLi-Ki9PJ-R485-8E4Ms-bFa3Kzyg5UtlP9RW-wi64OvV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Varying-Parameter+Convergent-Differential+Neural-Network+for+Solving+Time-Varying+Convex+QP+Problem+Constrained+by+Linear-Equality&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Zhang%2C+Zhijun&rft.au=Lu%2C+Yeyun&rft.au=Zheng%2C+Lunan&rft.au=Li%2C+Shuai&rft.date=2018-12-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=63&rft.issue=12&rft.spage=4110&rft.epage=4125&rft_id=info:doi/10.1109%2FTAC.2018.2810039&rft.externalDocID=8302931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon