A New Varying-Parameter Convergent-Differential Neural-Network for Solving Time-Varying Convex QP Problem Constrained by Linear-Equality
To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural ne...
Saved in:
Published in | IEEE transactions on automatic control Vol. 63; no. 12; pp. 4110 - 4125 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2018.2810039 |