Intelligent Resource Allocation in Joint Radar-Communication With Graph Neural Networks
Autonomous vehicles produce high data rates of sensory information from sensing systems. To achieve the advantages of sensor fusion among different vehicles in a cooperative driving scenario, high data-rate communication becomes essential. Current strategies for joint radar-communication (JRC) often...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 71; no. 10; pp. 11120 - 11135 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Autonomous vehicles produce high data rates of sensory information from sensing systems. To achieve the advantages of sensor fusion among different vehicles in a cooperative driving scenario, high data-rate communication becomes essential. Current strategies for joint radar-communication (JRC) often rely on specialized hardware, prior knowledge of the system model, and entail diminished capability in either radar or communication functions. In this paper, we propose a framework for intelligent vehicles to conduct JRC, with minimal prior knowledge of the system model and a tunable performance balance, in an environment where surrounding vehicles execute radar detection periodically, which is typical in contemporary protocols. We introduce a metric on the usefulness of data to help an intelligent vehicle decide what, and to whom, data should be transmitted. The problem framework is cast as a generalized form of the Markov Decision Process (MDP). We identify deep reinforcement learning algorithms (DRL) and algorithmic extensions suitable for solving our JRC problem. For multi-agent scenarios, we introduce a Graph Neural Network (GNN) framework via a control channel. This framework enables modular and fair comparisons of various algorithmic extensions. Our experiments show that DRL results in superior performance compared to non-learning algorithms. Learning of inter-agent coordination in the GNN framework, based only on the Markov task reward, further improves performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2022.3187377 |