Optimization for Full-Duplex Rotary-Wing UAV-Enabled Wireless-Powered IoT Networks

This paper investigates the rotary-wing unmanned aerial vehicle (UAV)-enabled full-duplex wireless-powered Internet-of-Things (IoT) networks, in which a rotary-wing UAV equipped with a full-duplex hybrid access point (HAP) serves multiple sparsely-distributed energy-constrained IoT sensors. The UAV...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 7; pp. 5057 - 5072
Main Authors Ye, Han-Ting, Kang, Xin, Joung, Jingon, Liang, Ying-Chang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates the rotary-wing unmanned aerial vehicle (UAV)-enabled full-duplex wireless-powered Internet-of-Things (IoT) networks, in which a rotary-wing UAV equipped with a full-duplex hybrid access point (HAP) serves multiple sparsely-distributed energy-constrained IoT sensors. The UAV broadcasts energy when flying and hovering, and collects information only when hovering. It is assumed that the transmission range of the UAV is limited and the sensors are sparsely distributed in the IoT network. Under these practical assumptions, we formulate three optimization problems: a sum-throughput maximization (STM) problem, a total-time minimization (TTM) problem, and a total-energy minimization (TEM) problem. For the TEM problem, we further take into consideration that the power needed for hovering, flying, and transmitting are different. For the STM, TTM and TEM problems, optimal solutions are obtained. Finally, numerical results show that the performance achieved by the proposed optimal time allocation schemes outperform existing time allocation schemes. It is also observed that i) the time allocation between hovering and flying time has different trends for different goals; ii) there is an optimal UAV transmit power range that minimizes the energy consumed by the UAV during the entire cycle.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.2989302