Thermal SPICE Modeling of FinFET and BEOL Considering Frequency-Dependent Transient Response, 3-D Heat Flow, Boundary/Alloy Scattering, and Interfacial Thermal Resistance

High device density and high power density intensify the self-heating effect in scaled FinFET circuits to degrade both device and back-end-of-line (BEOL) reliability. The boundary scattering in nanostructure, alloy scattering in SiGe, and interfacial thermal resistance (ITR) between different materi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 66; no. 6; pp. 2710 - 2714
Main Authors Chung, Chia-Che, Lin, H. H., Wan, W. K., Yang, M.-T., Liu, C. W.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High device density and high power density intensify the self-heating effect in scaled FinFET circuits to degrade both device and back-end-of-line (BEOL) reliability. The boundary scattering in nanostructure, alloy scattering in SiGe, and interfacial thermal resistance (ITR) between different materials even worsen the self-heating. A modularized FinFET SPICE model consisting of distributed <inline-formula> <tex-math notation="LaTeX">{R} _{\textsf {th}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{C} _{\textsf {th}} </tex-math></inline-formula> network is used to provide a transient thermal response. A two-step pseudo isothermal plane model is proposed to characterize the thermal behavior of BEOL. Both BEOL and FinFET SPICE model are verified by TCAD simulation with dc and ac inputs. The ITR significantly raises the junction temperature of the FinFETs (<inline-formula> <tex-math notation="LaTeX">\Delta {T}_{\textsf {j}}\sim \textsf {42}~^{\circ }\text{C} </tex-math></inline-formula>).
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2019.2912426