The Structural and Electrical Properties of the Au/n-Si (MS) Diodes With Nanocomposites Interlayer (Ag-Doped ZnO/PVP) by Using the Simple Ultrasound-Assisted Method

In this paper, Au/Ag-doped ZnO/polyvinyl pyrrolidone (PVP)/n-Si [metal-polymer-semiconductor (MPS)] Schottky Barrier Diodes (SBDs) were fabricated. The structural properties of the Ag-doped ZnO/PVP nanocomposites have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM),...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 66; no. 7; pp. 3103 - 3109
Main Authors Altindal, S., Sevgili, O., Azizian-Kalandaragh, Y.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, Au/Ag-doped ZnO/polyvinyl pyrrolidone (PVP)/n-Si [metal-polymer-semiconductor (MPS)] Schottky Barrier Diodes (SBDs) were fabricated. The structural properties of the Ag-doped ZnO/PVP nanocomposites have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. The XRD pattern indicated that the samples have high purity ZnO and Ag materials and have not observed other peaks. The mean crystallite size of nanoparticles was calculated using Debye-Scherer's equation and the measured sizes reveal clearly the formation of small nanocrystals. The SEM and EDX results show the sheetlike ZnO nanostructures and also confirm the presence of Zn, O, and Ag materials with the nonstoichiometric ratio. The values of ideality factor (<inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>), zero-bias barrier height (<inline-formula> <tex-math notation="LaTeX">\Phi _{B0} </tex-math></inline-formula>), and series resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{S} </tex-math></inline-formula>) of the MPS-type SBD were obtained from both the thermionic emission (TE) and Cheung function and the observed some discrepancy between them was due to the voltage-dependent of these parameters and the nature of the calculation method. The value of surface states (<inline-formula> <tex-math notation="LaTeX">{N}_{\text {ss}} </tex-math></inline-formula>) was changed from <inline-formula> <tex-math notation="LaTeX">{2.2} \times {10}^{13} </tex-math></inline-formula> eV −1 cm −2 at (<inline-formula> <tex-math notation="LaTeX">{E} _{c} - {0.44} </tex-math></inline-formula>) eV to <inline-formula> <tex-math notation="LaTeX">{8.19} \times {10}^{12} </tex-math></inline-formula> eV −1 cm −2 at (<inline-formula> <tex-math notation="LaTeX">{E} _{c} - {0.69} </tex-math></inline-formula>) eV and these values are more suitable for the MPS-type SBD. The values of doping-donor atoms (<inline-formula> <tex-math notation="LaTeX">{N} _{D} </tex-math></inline-formula>), depletion layer width (<inline-formula> <tex-math notation="LaTeX">{W}_{D} </tex-math></inline-formula>), and <inline-formula> <tex-math notation="LaTeX">\Phi _{B} </tex-math></inline-formula> [capacitance-voltage (<inline-formula> <tex-math notation="LaTeX">{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula>)] were obtained from the reverse bias <inline-formula> <tex-math notation="LaTeX">{C} ^{-{2}} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> plot as a function of frequency. While the value of <inline-formula> <tex-math notation="LaTeX">{N} _{D} </tex-math></inline-formula> decreases with increasing frequency, <inline-formula> <tex-math notation="LaTeX">{W}_{D} </tex-math></inline-formula> increases almost as exponentially. However, there is a good relationship between <inline-formula> <tex-math notation="LaTeX">\Phi _{B} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula>) and ln(<inline-formula> <tex-math notation="LaTeX">{f} </tex-math></inline-formula>).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2019.2913906