Adaptive Backstepping Control of Spacecraft Rendezvous and Proximity Operations With Input Saturation and Full-State Constraint

This paper presents a six-degree-of-freedom relative motion control method for autonomous spacecraft rendezvous and proximity operations subject to input saturation, full-state constraint, kinematic coupling, parametric uncertainty, and matched and mismatched disturbances. Relative rotational and re...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 64; no. 1; pp. 480 - 492
Main Authors Sun, Liang, Huo, Wei, Jiao, Zongxia
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a six-degree-of-freedom relative motion control method for autonomous spacecraft rendezvous and proximity operations subject to input saturation, full-state constraint, kinematic coupling, parametric uncertainty, and matched and mismatched disturbances. Relative rotational and relative translational controllers are developed separately based on a unified adaptive backstepping technique. Both element-wise and norm-wise adaptive estimation techniques are used for handling parametric uncertainties, kinematic couplings, and matched and mismatched disturbances, where the bounds of disturbances are unknown. Two auxiliary design systems are employed to deal with input saturation in the relative rotational and relative translational control designs, and the stability of the saturated control solution is verified. Full-state constraint of the relative pose motion is handled by using barrier Lyapunov functions while achieving a satisfactory control performance. All signals in the closed-loop system are guaranteed to be uniformly ultimately bounded, and the relative motion states are all restricted within the known constraints. Compared with the previous control designs of spacecraft rendezvous and proximity operations, the proposed control strategy in this paper can simultaneously deal with input saturation, full-state constraint, kinematic coupling, parametric uncertainty, and matched and mismatched disturbances. Experimental simulation results validate the performance and robustness improvement of the proposed control strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2016.2609399