Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization
This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a...
Saved in:
Published in | IEEE transactions on automatic control Vol. 68; no. 6; pp. 3822 - 3829 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-feedback gain and perturbation online by solving a linear matrix inequality optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. Additionally, an offline strategy that provides initial feasibility on the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through numerical examples from the literature. |
---|---|
AbstractList | This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-feedback gain and perturbation online by solving a linear matrix inequality optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. Additionally, an offline strategy that provides initial feasibility on the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through numerical examples from the literature. |
Author | Tahir, Furqan Evangelou, Simos A. Jaimoukha, Imad M. Georgiou, Anastasis |
Author_xml | – sequence: 1 givenname: Anastasis orcidid: 0000-0002-7555-8127 surname: Georgiou fullname: Georgiou, Anastasis email: anastasis.georgiou16@imperial.ac.uk organization: Department of Electrical and Electronic Engineering, Imperial College, London, U.K – sequence: 2 givenname: Furqan orcidid: 0000-0002-8131-7207 surname: Tahir fullname: Tahir, Furqan email: ftahir49@hotmail.com organization: Voltaware Services Limited, London, U.K – sequence: 3 givenname: Imad M. orcidid: 0000-0002-2971-3149 surname: Jaimoukha fullname: Jaimoukha, Imad M. email: i.jaimouka@imperial.ac.uk organization: Department of Electrical and Electronic Engineering, Imperial College, London, U.K – sequence: 4 givenname: Simos A. orcidid: 0000-0003-4613-9625 surname: Evangelou fullname: Evangelou, Simos A. email: s.evangelou@imperial.ac.uk organization: Department of Electrical and Electronic Engineering, Imperial College, London, U.K |
BookMark | eNp9kEtLxDAUhYMoOD72gpuA645J2sZmKcUXKIrjrEseNxLtNGOSCqN_3owjLlwIFy4XzjmX8-2h7cEPgNARJVNKiTh9Om-njDA2LRkhouZbaELruilYzcptNCGENoVgDd9FezG-5JNXFZ2gz9YvlmOSyflB9v0KX1jrtIMh4UevxpjwnTfQ44cAxunk3gG3fkjB99j6gOeDhpCkG_BsFRMs8Dy64Rm3coyyx7OcC8UlgFFSv-IHGeQCEgT38f3vAO1Y2Uc4_Nn7aH558dReF7f3Vzft-W2hmaCpAG2IUpbWivPKEFrxM86YUUrmvqI0UlkmlBVVzQ2X1RnhdQNZZznVhlso99HJJncZ_NsIMXUvfgy5buxYQ0Ul8jRZxTcqHXyMAWyn3YZLCtL1HSXdGnSXQXdr0N0P6Gwkf4zL4BYyrP6zHG8sDgB-5aLhNWVl-QVElYz7 |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1080_00207721_2024_2420876 crossref_primary_10_1109_TTE_2023_3340670 crossref_primary_10_1016_j_jwpe_2024_105836 crossref_primary_10_3390_sym15101845 crossref_primary_10_1016_j_jfranklin_2024_107124 crossref_primary_10_1007_s40435_025_01587_9 |
Cites_doi | 10.1109/CDC.2013.6760029 10.3182/20110828-6-IT-1002.03112 10.1109/CCDC.2013.6561023 10.1016/j.automatica.2004.08.019 10.1109/TAC.2014.2336358 10.1002/rnc.5259 10.1016/S0005-1098(02)00012-2 10.1016/j.automatica.2013.06.015 10.1016/S0005-1098(99)00214-9 10.1016/j.automatica.2012.05.003 10.1017/9781139061759 10.1109/TAC.2010.2046053 10.1016/j.automatica.2005.08.023 10.23919/ACC.2019.8814865 10.1016/j.automatica.2003.08.009 10.1109/CDC42340.2020.9304200 10.1002/rnc.4573 10.1137/S1052623496305717 10.1016/j.automatica.2019.108622 10.1002/rnc.889 10.23919/ACC50511.2021.9482957 10.1016/j.jprocont.2012.08.003 10.1016/S0967-0661(02)00186-7 10.1007/978-1-4615-6281-8_15 10.1016/0005-1098(96)00063-5 10.1016/j.ifacol.2020.12.723 10.1137/S003614450444614X 10.1007/0-387-30528-9_7 10.1002/rnc.658 10.1109/9.704989 10.1007/978-3-319-24853-0 10.1016/j.ifacol.2018.11.183 10.1016/j.automatica.2014.10.128 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2022.3200956 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 3829 |
ExternalDocumentID | 10_1109_TAC_2022_3200956 9865123 |
Genre | orig-research |
GrantInformation_xml | – fundername: EPSRC Industrial CASE Studentship award in collaboration with Schlumberger grantid: EP/R512540/1 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-ecd0bbf15b664d01467622dbba20293dabf29bf9456d6a470658ed01f61cd6fe3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 08:24:22 EDT 2025 Tue Jul 01 03:36:44 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Aug 27 02:18:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ecd0bbf15b664d01467622dbba20293dabf29bf9456d6a470658ed01f61cd6fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8131-7207 0000-0002-2971-3149 0000-0002-7555-8127 0000-0003-4613-9625 |
PQID | 2819499498 |
PQPubID | 85475 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_TAC_2022_3200956 proquest_journals_2819499498 crossref_citationtrail_10_1109_TAC_2022_3200956 ieee_primary_9865123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 Skelton (ref33) 1997 ref10 ref32 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 Rawlings (ref1) 2017 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref21 doi: 10.1109/CDC.2013.6760029 – ident: ref17 doi: 10.3182/20110828-6-IT-1002.03112 – ident: ref22 doi: 10.1109/CCDC.2013.6561023 – ident: ref6 doi: 10.1016/j.automatica.2004.08.019 – ident: ref13 doi: 10.1109/TAC.2014.2336358 – ident: ref34 doi: 10.1002/rnc.5259 – ident: ref16 doi: 10.1016/S0005-1098(02)00012-2 – ident: ref26 doi: 10.1016/j.automatica.2013.06.015 – volume-title: Model Predictive Control: Theory, Computation and Design year: 2017 ident: ref1 – ident: ref5 doi: 10.1016/S0005-1098(99)00214-9 – ident: ref14 doi: 10.1016/j.automatica.2012.05.003 – ident: ref2 doi: 10.1017/9781139061759 – ident: ref31 doi: 10.1109/TAC.2010.2046053 – ident: ref10 doi: 10.1016/j.automatica.2005.08.023 – ident: ref24 doi: 10.23919/ACC.2019.8814865 – ident: ref9 doi: 10.1016/j.automatica.2003.08.009 – volume-title: A Unified Algebraic Approach to Control Design year: 1997 ident: ref33 – ident: ref25 doi: 10.1109/CDC42340.2020.9304200 – ident: ref30 doi: 10.1002/rnc.4573 – ident: ref28 doi: 10.1137/S1052623496305717 – ident: ref23 doi: 10.1016/j.automatica.2019.108622 – ident: ref8 doi: 10.1002/rnc.889 – ident: ref12 doi: 10.23919/ACC50511.2021.9482957 – ident: ref18 doi: 10.1016/j.jprocont.2012.08.003 – ident: ref4 doi: 10.1016/S0967-0661(02)00186-7 – ident: ref19 doi: 10.1007/978-1-4615-6281-8_15 – ident: ref15 doi: 10.1016/0005-1098(96)00063-5 – ident: ref27 doi: 10.1016/j.ifacol.2020.12.723 – ident: ref29 doi: 10.1137/S003614450444614X – ident: ref35 doi: 10.1007/0-387-30528-9_7 – ident: ref32 doi: 10.1002/rnc.658 – ident: ref7 doi: 10.1109/9.704989 – ident: ref3 doi: 10.1007/978-3-319-24853-0 – ident: ref20 doi: 10.1016/j.ifacol.2018.11.183 – ident: ref11 doi: 10.1016/j.automatica.2014.10.128 |
SSID | ssj0016441 |
Score | 2.467811 |
Snippet | This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3822 |
SubjectTerms | Algorithms Costs Discrete time systems Elimination lemma Linear matrix inequalities Mathematical analysis Optimal control Optimization Parameterization Perturbation Perturbation methods Predictive control Robust control robust model predictive control (RMPC) semidefinite relaxation State feedback state-feedback control Tracking control Trajectory Uncertain systems Uncertainty |
Title | Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization |
URI | https://ieeexplore.ieee.org/document/9865123 https://www.proquest.com/docview/2819499498 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyNBEC6ip_WwvtmoK33wIjjJTM-knT5KMIgQkcWAt6GfF0MiZuaw65-3qnsyiIrsbQ79Yqq6Hl1VXwGc6VKjESvLRHHhk8KlLtEjxRMutPdGptYIqkae3ombWXH7OHrswUVXC-OcC8lnbkCfIZZvl6ahp7KhLAXqp3wDNtBxi7VaXcSA9HqUuniBedmFJFM5fLgaoyPI-SCnUAC1qn6ngkJPlU-COGiXyTZM1-eKSSVPg6bWA_PvA2Tj_x58B362Zia7inyxCz232IOtd-CD-_AaGzq0j4Hzv-w6oEngQuzPUjermlGftDm7f6FYDklFNo557QwNXTZDbgnZBCyCnrOQfMDGqlnhxsGGTSaoGrUyT-xeUQ4YwULHqs8DmE2uH8Y3SduKITFcZnXijE219tlIC1FYApxBIcqt1gp_rMyt0p5L7SWaY1aogmKnpcNxXmTGCu_yQ9hcLBfuF7CRTF1qHbp5xhepvVR5ZtFNueS5yxSu0ofhmjqVaXHKqV3GvAr-SiorpGdF9KxaevbhvJvxHDE6vhm7T-TpxrWU6cPJmgGq9hKvKooxokNYyPLo61nH8IO6z8fMsRPYrF8a9xttlFqfBuZ8A8Zd5UE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ReqA99AWoaSndA5dKOLHX9uI9oogotAQhlEjcrH1eiJKK2Ie2f74zu46FWlT15sO-5Jmdx87MNwAnutJoxMoqUVz4pHCpS3SpeMKF9t7I1BpB1cizazFdFF_vyrsdOO1rYZxzIfnMDekzxPLt2rT0VDaSlUD9lD-D56j3Sx6rtfqYAWn2KHfxCvOqD0qmcjQ_H6MryPkwp2AANat-pIRCV5W_RHHQL5PXMNueLKaV3A_bRg_Nzz9AG__36G_gVWdosvPIGW9hx63ewctH8IP78Cu2dOieA5c_2EXAk8CF2O1at5uGUae0Jbt5oGgOyUU2jpntDE1dtkB-CfkELMKes5B-wMaq3eDGwYpNJqgctTL37EZRFhgBQ8e6zwNYTC7m42nSNWNIDJdZkzhjU619VmohCkuQMyhGudVa4Y-VuVXac6m9RIPMClVQ9LRyOM6LzFjhXX4Iu6v1yr0HVsrUpdaho2d8kdozlWcWHZUznrtM4SoDGG2pU5sOqZwaZizr4LGkskZ61kTPuqPnAL70M75HlI5_jN0n8vTjOsoM4GjLAHV3jTc1RRnRJSxk9eHpWZ9hbzqfXdVXl9ffPsIL6kUf88iOYLd5aN0ntFgafRwY9TfjoOiL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Robust+Model+Predictive+Control+for+Uncertain+System+Using+Causal+State-Feedback+Parameterization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Georgiou%2C+Anastasis&rft.au=Tahir%2C+Furqan&rft.au=Jaimoukha%2C+Imad+M.&rft.au=Evangelou%2C+Simos+A.&rft.date=2023-06-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=6&rft.spage=3822&rft.epage=3829&rft_id=info:doi/10.1109%2FTAC.2022.3200956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3200956 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |