Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization

This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 6; pp. 3822 - 3829
Main Authors Georgiou, Anastasis, Tahir, Furqan, Jaimoukha, Imad M., Evangelou, Simos A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-feedback gain and perturbation online by solving a linear matrix inequality optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. Additionally, an offline strategy that provides initial feasibility on the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through numerical examples from the literature.
AbstractList This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-feedback gain and perturbation online by solving a linear matrix inequality optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. Additionally, an offline strategy that provides initial feasibility on the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through numerical examples from the literature.
Author Tahir, Furqan
Evangelou, Simos A.
Jaimoukha, Imad M.
Georgiou, Anastasis
Author_xml – sequence: 1
  givenname: Anastasis
  orcidid: 0000-0002-7555-8127
  surname: Georgiou
  fullname: Georgiou, Anastasis
  email: anastasis.georgiou16@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College, London, U.K
– sequence: 2
  givenname: Furqan
  orcidid: 0000-0002-8131-7207
  surname: Tahir
  fullname: Tahir, Furqan
  email: ftahir49@hotmail.com
  organization: Voltaware Services Limited, London, U.K
– sequence: 3
  givenname: Imad M.
  orcidid: 0000-0002-2971-3149
  surname: Jaimoukha
  fullname: Jaimoukha, Imad M.
  email: i.jaimouka@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College, London, U.K
– sequence: 4
  givenname: Simos A.
  orcidid: 0000-0003-4613-9625
  surname: Evangelou
  fullname: Evangelou, Simos A.
  email: s.evangelou@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College, London, U.K
BookMark eNp9kEtLxDAUhYMoOD72gpuA645J2sZmKcUXKIrjrEseNxLtNGOSCqN_3owjLlwIFy4XzjmX8-2h7cEPgNARJVNKiTh9Om-njDA2LRkhouZbaELruilYzcptNCGENoVgDd9FezG-5JNXFZ2gz9YvlmOSyflB9v0KX1jrtIMh4UevxpjwnTfQ44cAxunk3gG3fkjB99j6gOeDhpCkG_BsFRMs8Dy64Rm3coyyx7OcC8UlgFFSv-IHGeQCEgT38f3vAO1Y2Uc4_Nn7aH558dReF7f3Vzft-W2hmaCpAG2IUpbWivPKEFrxM86YUUrmvqI0UlkmlBVVzQ2X1RnhdQNZZznVhlso99HJJncZ_NsIMXUvfgy5buxYQ0Ul8jRZxTcqHXyMAWyn3YZLCtL1HSXdGnSXQXdr0N0P6Gwkf4zL4BYyrP6zHG8sDgB-5aLhNWVl-QVElYz7
CODEN IETAA9
CitedBy_id crossref_primary_10_1080_00207721_2024_2420876
crossref_primary_10_1109_TTE_2023_3340670
crossref_primary_10_1016_j_jwpe_2024_105836
crossref_primary_10_3390_sym15101845
crossref_primary_10_1016_j_jfranklin_2024_107124
crossref_primary_10_1007_s40435_025_01587_9
Cites_doi 10.1109/CDC.2013.6760029
10.3182/20110828-6-IT-1002.03112
10.1109/CCDC.2013.6561023
10.1016/j.automatica.2004.08.019
10.1109/TAC.2014.2336358
10.1002/rnc.5259
10.1016/S0005-1098(02)00012-2
10.1016/j.automatica.2013.06.015
10.1016/S0005-1098(99)00214-9
10.1016/j.automatica.2012.05.003
10.1017/9781139061759
10.1109/TAC.2010.2046053
10.1016/j.automatica.2005.08.023
10.23919/ACC.2019.8814865
10.1016/j.automatica.2003.08.009
10.1109/CDC42340.2020.9304200
10.1002/rnc.4573
10.1137/S1052623496305717
10.1016/j.automatica.2019.108622
10.1002/rnc.889
10.23919/ACC50511.2021.9482957
10.1016/j.jprocont.2012.08.003
10.1016/S0967-0661(02)00186-7
10.1007/978-1-4615-6281-8_15
10.1016/0005-1098(96)00063-5
10.1016/j.ifacol.2020.12.723
10.1137/S003614450444614X
10.1007/0-387-30528-9_7
10.1002/rnc.658
10.1109/9.704989
10.1007/978-3-319-24853-0
10.1016/j.ifacol.2018.11.183
10.1016/j.automatica.2014.10.128
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2022.3200956
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3829
ExternalDocumentID 10_1109_TAC_2022_3200956
9865123
Genre orig-research
GrantInformation_xml – fundername: EPSRC Industrial CASE Studentship award in collaboration with Schlumberger
  grantid: EP/R512540/1
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-ecd0bbf15b664d01467622dbba20293dabf29bf9456d6a470658ed01f61cd6fe3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 08:24:22 EDT 2025
Tue Jul 01 03:36:44 EDT 2025
Thu Apr 24 22:56:13 EDT 2025
Wed Aug 27 02:18:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ecd0bbf15b664d01467622dbba20293dabf29bf9456d6a470658ed01f61cd6fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8131-7207
0000-0002-2971-3149
0000-0002-7555-8127
0000-0003-4613-9625
PQID 2819499498
PQPubID 85475
PageCount 8
ParticipantIDs crossref_primary_10_1109_TAC_2022_3200956
proquest_journals_2819499498
crossref_citationtrail_10_1109_TAC_2022_3200956
ieee_primary_9865123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
Skelton (ref33) 1997
ref10
ref32
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
Rawlings (ref1) 2017
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/CDC.2013.6760029
– ident: ref17
  doi: 10.3182/20110828-6-IT-1002.03112
– ident: ref22
  doi: 10.1109/CCDC.2013.6561023
– ident: ref6
  doi: 10.1016/j.automatica.2004.08.019
– ident: ref13
  doi: 10.1109/TAC.2014.2336358
– ident: ref34
  doi: 10.1002/rnc.5259
– ident: ref16
  doi: 10.1016/S0005-1098(02)00012-2
– ident: ref26
  doi: 10.1016/j.automatica.2013.06.015
– volume-title: Model Predictive Control: Theory, Computation and Design
  year: 2017
  ident: ref1
– ident: ref5
  doi: 10.1016/S0005-1098(99)00214-9
– ident: ref14
  doi: 10.1016/j.automatica.2012.05.003
– ident: ref2
  doi: 10.1017/9781139061759
– ident: ref31
  doi: 10.1109/TAC.2010.2046053
– ident: ref10
  doi: 10.1016/j.automatica.2005.08.023
– ident: ref24
  doi: 10.23919/ACC.2019.8814865
– ident: ref9
  doi: 10.1016/j.automatica.2003.08.009
– volume-title: A Unified Algebraic Approach to Control Design
  year: 1997
  ident: ref33
– ident: ref25
  doi: 10.1109/CDC42340.2020.9304200
– ident: ref30
  doi: 10.1002/rnc.4573
– ident: ref28
  doi: 10.1137/S1052623496305717
– ident: ref23
  doi: 10.1016/j.automatica.2019.108622
– ident: ref8
  doi: 10.1002/rnc.889
– ident: ref12
  doi: 10.23919/ACC50511.2021.9482957
– ident: ref18
  doi: 10.1016/j.jprocont.2012.08.003
– ident: ref4
  doi: 10.1016/S0967-0661(02)00186-7
– ident: ref19
  doi: 10.1007/978-1-4615-6281-8_15
– ident: ref15
  doi: 10.1016/0005-1098(96)00063-5
– ident: ref27
  doi: 10.1016/j.ifacol.2020.12.723
– ident: ref29
  doi: 10.1137/S003614450444614X
– ident: ref35
  doi: 10.1007/0-387-30528-9_7
– ident: ref32
  doi: 10.1002/rnc.658
– ident: ref7
  doi: 10.1109/9.704989
– ident: ref3
  doi: 10.1007/978-3-319-24853-0
– ident: ref20
  doi: 10.1016/j.ifacol.2018.11.183
– ident: ref11
  doi: 10.1016/j.automatica.2014.10.128
SSID ssj0016441
Score 2.467811
Snippet This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3822
SubjectTerms Algorithms
Costs
Discrete time systems
Elimination lemma
Linear matrix inequalities
Mathematical analysis
Optimal control
Optimization
Parameterization
Perturbation
Perturbation methods
Predictive control
Robust control
robust model predictive control (RMPC)
semidefinite relaxation
State feedback
state-feedback control
Tracking control
Trajectory
Uncertain systems
Uncertainty
Title Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization
URI https://ieeexplore.ieee.org/document/9865123
https://www.proquest.com/docview/2819499498
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyNBEC6ip_WwvtmoK33wIjjJTM-knT5KMIgQkcWAt6GfF0MiZuaw65-3qnsyiIrsbQ79Yqq6Hl1VXwGc6VKjESvLRHHhk8KlLtEjxRMutPdGptYIqkae3ombWXH7OHrswUVXC-OcC8lnbkCfIZZvl6ahp7KhLAXqp3wDNtBxi7VaXcSA9HqUuniBedmFJFM5fLgaoyPI-SCnUAC1qn6ngkJPlU-COGiXyTZM1-eKSSVPg6bWA_PvA2Tj_x58B362Zia7inyxCz232IOtd-CD-_AaGzq0j4Hzv-w6oEngQuzPUjermlGftDm7f6FYDklFNo557QwNXTZDbgnZBCyCnrOQfMDGqlnhxsGGTSaoGrUyT-xeUQ4YwULHqs8DmE2uH8Y3SduKITFcZnXijE219tlIC1FYApxBIcqt1gp_rMyt0p5L7SWaY1aogmKnpcNxXmTGCu_yQ9hcLBfuF7CRTF1qHbp5xhepvVR5ZtFNueS5yxSu0ofhmjqVaXHKqV3GvAr-SiorpGdF9KxaevbhvJvxHDE6vhm7T-TpxrWU6cPJmgGq9hKvKooxokNYyPLo61nH8IO6z8fMsRPYrF8a9xttlFqfBuZ8A8Zd5UE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5ReqA99AWoaSndA5dKOLHX9uI9oogotAQhlEjcrH1eiJKK2Ie2f74zu46FWlT15sO-5Jmdx87MNwAnutJoxMoqUVz4pHCpS3SpeMKF9t7I1BpB1cizazFdFF_vyrsdOO1rYZxzIfnMDekzxPLt2rT0VDaSlUD9lD-D56j3Sx6rtfqYAWn2KHfxCvOqD0qmcjQ_H6MryPkwp2AANat-pIRCV5W_RHHQL5PXMNueLKaV3A_bRg_Nzz9AG__36G_gVWdosvPIGW9hx63ewctH8IP78Cu2dOieA5c_2EXAk8CF2O1at5uGUae0Jbt5oGgOyUU2jpntDE1dtkB-CfkELMKes5B-wMaq3eDGwYpNJqgctTL37EZRFhgBQ8e6zwNYTC7m42nSNWNIDJdZkzhjU619VmohCkuQMyhGudVa4Y-VuVXac6m9RIPMClVQ9LRyOM6LzFjhXX4Iu6v1yr0HVsrUpdaho2d8kdozlWcWHZUznrtM4SoDGG2pU5sOqZwaZizr4LGkskZ61kTPuqPnAL70M75HlI5_jN0n8vTjOsoM4GjLAHV3jTc1RRnRJSxk9eHpWZ9hbzqfXdVXl9ffPsIL6kUf88iOYLd5aN0ntFgafRwY9TfjoOiL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Robust+Model+Predictive+Control+for+Uncertain+System+Using+Causal+State-Feedback+Parameterization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Georgiou%2C+Anastasis&rft.au=Tahir%2C+Furqan&rft.au=Jaimoukha%2C+Imad+M.&rft.au=Evangelou%2C+Simos+A.&rft.date=2023-06-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=6&rft.spage=3822&rft.epage=3829&rft_id=info:doi/10.1109%2FTAC.2022.3200956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3200956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon