Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization

This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 6; pp. 3822 - 3829
Main Authors Georgiou, Anastasis, Tahir, Furqan, Jaimoukha, Imad M., Evangelou, Simos A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article investigates the problem of robust model predictive control (RMPC) of linear-time-invariant discrete-time systems subject to structured uncertainty and bounded disturbances. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques. The proposed algorithm computes the state-feedback gain and perturbation online by solving a linear matrix inequality optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. Additionally, an offline strategy that provides initial feasibility on the RMPC problem is presented. The effectiveness of the proposed scheme is demonstrated through numerical examples from the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3200956