Twinning–Detwinning-Dominated Cyclic Deformation Behavior of a High-Strength Mg-Al-Sn-Zn Alloy during Loading Reversals: Experiment and Modeling
The deformation behavior of a high-strength Mg-Al-Sn-Zn alloy under loading reversals has been thoroughly examined through a combination of experimental measurements and crystal plasticity modeling. We focused on an age-treated alloy fortified by distributed Mg2Sn particles and Mg17Al12 precipitates...
Saved in:
Published in | Metals (Basel ) Vol. 14; no. 6; p. 635 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The deformation behavior of a high-strength Mg-Al-Sn-Zn alloy under loading reversals has been thoroughly examined through a combination of experimental measurements and crystal plasticity modeling. We focused on an age-treated alloy fortified by distributed Mg2Sn particles and Mg17Al12 precipitates, which underwent two distinct loading cycles: tension-compression-tension (TCT) and compression-tension-compression (CTC), aligned with the extrusion direction (ED). The initial and deformed microstructures of the alloy were analyzed using the electron backscattering diffraction (EBSD) technique. Notably, the alloy displays tensile and compressive yield strengths (YS) of 215 MPa and 160 MPa, respectively, with pronounced anelastic behavior observed during unloading and reverse loading phases. Utilizing the elasto-viscoplastic self-consistent model incorporating a twinning–detwinning scheme (EVPSC-TDT), the cyclic stress–strain responses and resultant textures of the alloy were accurately captured. The predicted alternation between various slip and twinning modes during plastic deformation was used to interpret the observed behaviors. It was found that prismatic slip plays an important role during the plastic deformation of the studied alloy, and its relative activity in tensile loading processes accounts for up to ~66% and ~67% in the TCT and CTC cases, respectively. Moreover, it was discerned that detwinning and twinning behaviors are predominantly governed by stresses within the parent grain, and they can concurrently manifest during the reverse tensile loading phase in the TCT case. After cyclic deformation, the area fractions of residual twins were determined to be 7.51% and 0.93% in the TCT and CTC cases, respectively, which is a result of the varied twinning–detwinning behavior of the alloy in different loading paths. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met14060635 |