Binary Linear Codes With Optimal Scaling: Polar Codes With Large Kernels

We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary code...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 67; no. 9; pp. 5693 - 5710
Main Authors Fazeli, Arman, Hassani, Hamed, Mondelli, Marco, Vardy, Alexander
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2020.3038806

Cover

Loading…
More Information
Summary:We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and analysis of binary polar codes with large kernels . When communicating reliably at rates within <inline-formula> <tex-math notation="LaTeX">\varepsilon > 0 </tex-math></inline-formula> of capacity, the code length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> often scales as <inline-formula> <tex-math notation="LaTeX">O(1/\varepsilon ^{\mu }) </tex-math></inline-formula>, where the constant <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> is called the scaling exponent . It is known that the optimal scaling exponent is <inline-formula> <tex-math notation="LaTeX">\mu =2 </tex-math></inline-formula>, and it is achieved by random linear codes. The scaling exponent of conventional polar codes (based on the <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> kernel) on the BEC is <inline-formula> <tex-math notation="LaTeX">\mu =3.63 </tex-math></inline-formula>. This falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof of the following result: for the BEC, there exist <inline-formula> <tex-math notation="LaTeX">\ell \times \ell </tex-math></inline-formula> binary kernels, such that polar codes constructed from these kernels achieve scaling exponent <inline-formula> <tex-math notation="LaTeX">\mu (\ell) </tex-math></inline-formula> that tends to the optimal value of 2 as <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula> grows. We furthermore characterize precisely how large <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula> needs to be as a function of the gap between <inline-formula> <tex-math notation="LaTeX">\mu (\ell) </tex-math></inline-formula> and 2. The resulting binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction complexity <inline-formula> <tex-math notation="LaTeX">O(n) </tex-math></inline-formula> and encoding/decoding complexity <inline-formula> <tex-math notation="LaTeX">O(n\log n) </tex-math></inline-formula>.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2020.3038806