Recurrent-Neural-Network-Based Velocity-Level Redundancy Resolution for Manipulators Subject to a Joint Acceleration Limit

For the safe operation of redundant manipulators, physical constraints such as the joint angle, joint velocity, and joint acceleration limits should be taken into account when designing redundancy resolution schemes. Velocity-level redundancy resolution schemes are widely adopted in the kinematic co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 66; no. 5; pp. 3573 - 3582
Main Authors Zhang, Yinyan, Li, Shuai, Zhou, Xuefeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For the safe operation of redundant manipulators, physical constraints such as the joint angle, joint velocity, and joint acceleration limits should be taken into account when designing redundancy resolution schemes. Velocity-level redundancy resolution schemes are widely adopted in the kinematic control of redundant manipulators due to the existence of the well-tuned inner loop regarding the joint velocity control. However, it is difficult to deal with joint acceleration limits for velocity-level redundancy resolution methods. In this paper, a recurrent-neural-network-based velocity-level redundancy resolution method is proposed to deal with the problem, and theoretical results are given to guarantee its performance. By the proposed method, the end-effector position error is asymptotically convergent to zero, and all the joint limits are not violated. The effectiveness and superiority of the proposed scheme are validated via simulation results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2018.2851960