Distribution of the Scaled Condition Number of Single-Spiked Complex Wishart Matrices

Let <inline-formula> <tex-math notation="LaTeX">\mathbf {X}\in \mathbb {C}^{n\times m} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m\geq n </tex-math></inline-formula>) be a random matrix with independe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 68; no. 10; pp. 6716 - 6737
Main Authors Dissanayake, Pasan, Dharmawansa, Prathapasinghe, Chen, Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let <inline-formula> <tex-math notation="LaTeX">\mathbf {X}\in \mathbb {C}^{n\times m} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">m\geq n </tex-math></inline-formula>) be a random matrix with independent columns each distributed as complex multivariate Gaussian with zero mean and single-spiked covariance matrix <inline-formula> <tex-math notation="LaTeX">\mathbf {I}_{n}+ \eta \mathbf {u}\mathbf {u}^{*} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\mathbf {I}_{n} </tex-math></inline-formula> is the <inline-formula> <tex-math notation="LaTeX">n\times n </tex-math></inline-formula> identity matrix, <inline-formula> <tex-math notation="LaTeX">\mathbf {u}\in \mathbb {C}^{n\times 1} </tex-math></inline-formula> is an arbitrary vector with unit Euclidean norm, <inline-formula> <tex-math notation="LaTeX">\eta \geq 0 </tex-math></inline-formula> is a non-random parameter, and <inline-formula> <tex-math notation="LaTeX">(\cdot)^{*} </tex-math></inline-formula> represents the conjugate-transpose. This paper investigates the distribution of the random quantity <inline-formula> <tex-math notation="LaTeX">\kappa _{\text {SC}}^{2}(\mathbf {X})=\sum _{k=1}^{n} \lambda _{k}/\lambda _{1} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">0\le \lambda _{1}\le \lambda _{2}\le \ldots \leq \lambda _{n} < \infty </tex-math></inline-formula> are the ordered eigenvalues of <inline-formula> <tex-math notation="LaTeX">\mathbf {X}\mathbf {X}^{*} </tex-math></inline-formula> (i.e., single-spiked Wishart matrix). This random quantity is intimately related to the so called scaled condition number or the Demmel condition number (i.e., <inline-formula> <tex-math notation="LaTeX">\kappa _{\text {SC}}(\mathbf {X}) </tex-math></inline-formula>) and the minimum eigenvalue of the fixed trace Wishart-Laguerre ensemble (i.e., <inline-formula> <tex-math notation="LaTeX">\kappa _{\text {SC}}^{-2}(\mathbf {X}) </tex-math></inline-formula>). In particular, we use an orthogonal polynomial approach to derive an exact expression for the probability density function of <inline-formula> <tex-math notation="LaTeX">\kappa _{\text {SC}}^{2}(\mathbf {X}) </tex-math></inline-formula> which is amenable to asymptotic analysis as matrix dimensions grow large. Our asymptotic results reveal that, as <inline-formula> <tex-math notation="LaTeX">m,n\to \infty </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">m-n </tex-math></inline-formula> is fixed and when <inline-formula> <tex-math notation="LaTeX">\eta </tex-math></inline-formula> scales on the order of <inline-formula> <tex-math notation="LaTeX">1/n </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\kappa _{\text {SC}}^{2}(\mathbf {X}) </tex-math></inline-formula> scales on the order of <inline-formula> <tex-math notation="LaTeX">n^{3} </tex-math></inline-formula>. In this respect we establish simple closed-form expressions for the limiting distributions. It turns out that, as <inline-formula> <tex-math notation="LaTeX">m,n\to \infty </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">n/m\to c\in (0,1) </tex-math></inline-formula>, properly centered <inline-formula> <tex-math notation="LaTeX">\kappa _{\text {SC}}^{2}(\mathbf {X}) </tex-math></inline-formula> fluctuates on the scale <inline-formula> <tex-math notation="LaTeX">m^{\frac {1}{3}} </tex-math></inline-formula>.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2022.3180286