Multipath Suppression for Continuous Wave Radar via Slepian Sequences

In continuous wave (CW) radar systems, multiple signal copies impinge the receiver simultaneously. Often, undesired multipath and direct-path copies are many times stronger than potential targets. When applying matched filter signal processing techniques, the undesired signal components can mask wea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 68; pp. 548 - 557
Main Authors Day, Brian P., Evers, Aaron, Hack, Daniel E.
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In continuous wave (CW) radar systems, multiple signal copies impinge the receiver simultaneously. Often, undesired multipath and direct-path copies are many times stronger than potential targets. When applying matched filter signal processing techniques, the undesired signal components can mask weaker targets and decrease performance of post-processing techniques, such as target indication or estimation. In this manuscript, we propose a method of rejecting multipath-scattered returns over a continuous region in range and Doppler. We explore the computational cost of this method and additionally propose an approximate method of rejection which leverages the well-known discrete prolate spheroidal sequences (DPSS)-typically referred to as Slepian sequences-to gain a computational advantage. Results are shown to decrease the effective noise floor when applying matched filtering techniques as well as increase target signal-to-interference-plus-noise ratio (SINR) outside of an undesired multipath region. Comparisons are shown to traditional CW multipath removal in terms of rejection performance and run-time.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.2964199