Robust Beamforming for Nonorthogonal Multiple-Access Systems in MISO Channels

Nonorthogonal multiple access (NOMA) is a promising technology in future mobile communication systems. In this paper, considering that the base station knows imperfect channel state information (CSI), we investigate the robust beamforming design problem for NOMA systems in multiple-input-single-outp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 65; no. 12; pp. 10231 - 10236
Main Authors Zhang, Qi, Li, Quanzhong, Qin, Jiayin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nonorthogonal multiple access (NOMA) is a promising technology in future mobile communication systems. In this paper, considering that the base station knows imperfect channel state information (CSI), we investigate the robust beamforming design problem for NOMA systems in multiple-input-single-output (MISO) channels. Modeling channel uncertainties by the worst-case model, we aim at maximizing the worst-case achievable sum rate subject to the transmit power constraint at the base station. We propose to decouple the nonconvex optimization problem into four optimization problems and employ an alternating optimization algorithm to solve the problem. Simulation results demonstrate that our proposed robust beamforming scheme outperforms the orthogonal multiple-access scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2016.2547998