Linear Precoding for Fading Cognitive Multiple-Access Wiretap Channel With Finite-Alphabet Inputs
We investigate the fading cognitive multiple-access wiretap channel (CMAC-WT), in which two secondary-user transmitters (STs) send secure messages to a secondary-user receiver (SR) in the presence of an eavesdropper and subject to interference threshold constraints at multiple primary-user receivers...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 66; no. 4; pp. 3059 - 3070 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate the fading cognitive multiple-access wiretap channel (CMAC-WT), in which two secondary-user transmitters (STs) send secure messages to a secondary-user receiver (SR) in the presence of an eavesdropper and subject to interference threshold constraints at multiple primary-user receivers (PRs). We design linear precoders to maximize the average secrecy sum rate for a multiple-input-multiple-output (MIMO) fading CMAC-WT under finite-alphabet inputs and statistical channel state information at STs. For this nondeterministic polynomial-time NP-hard problem, we utilize an accurate approximation of the average secrecy sum rate to reduce the computational complexity and then present a two-layer algorithm by embedding the convex-concave procedure into an outer-approximation framework. The idea behind this algorithm is to reformulate the approximated average secrecy sum rate as a difference of convex functions and then generate a sequence of simpler relaxed sets to approach the nonconvex feasible set. Subsequently, we maximize the approximated average secrecy sum rate over the sequence of relaxed sets by using the convex-concave procedure. Numerical results indicate that our proposed precoding algorithm is superior to the conventional Gaussian precoding method in the medium and high signal-to-noise ratio (SNR) regimes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2016.2590539 |