Linear Precoding for Fading Cognitive Multiple-Access Wiretap Channel With Finite-Alphabet Inputs

We investigate the fading cognitive multiple-access wiretap channel (CMAC-WT), in which two secondary-user transmitters (STs) send secure messages to a secondary-user receiver (SR) in the presence of an eavesdropper and subject to interference threshold constraints at multiple primary-user receivers...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 66; no. 4; pp. 3059 - 3070
Main Authors Jin, Juening, Xiao, Chengshan, Tao, Meixia, Chen, Wen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the fading cognitive multiple-access wiretap channel (CMAC-WT), in which two secondary-user transmitters (STs) send secure messages to a secondary-user receiver (SR) in the presence of an eavesdropper and subject to interference threshold constraints at multiple primary-user receivers (PRs). We design linear precoders to maximize the average secrecy sum rate for a multiple-input-multiple-output (MIMO) fading CMAC-WT under finite-alphabet inputs and statistical channel state information at STs. For this nondeterministic polynomial-time NP-hard problem, we utilize an accurate approximation of the average secrecy sum rate to reduce the computational complexity and then present a two-layer algorithm by embedding the convex-concave procedure into an outer-approximation framework. The idea behind this algorithm is to reformulate the approximated average secrecy sum rate as a difference of convex functions and then generate a sequence of simpler relaxed sets to approach the nonconvex feasible set. Subsequently, we maximize the approximated average secrecy sum rate over the sequence of relaxed sets by using the convex-concave procedure. Numerical results indicate that our proposed precoding algorithm is superior to the conventional Gaussian precoding method in the medium and high signal-to-noise ratio (SNR) regimes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2016.2590539