V2X-Sim: Multi-Agent Collaborative Perception Dataset and Benchmark for Autonomous Driving

Vehicle-to-everything (V2X) communication techniques enable the collaboration between vehicles and many other entities in the neighboring environment, which could fundamentally improve the perception system for autonomous driving. However, the lack of a public dataset significantly restricts the res...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 7; no. 4; pp. 10914 - 10921
Main Authors Li, Yiming, Ma, Dekun, An, Ziyan, Wang, Zixun, Zhong, Yiqi, Chen, Siheng, Feng, Chen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vehicle-to-everything (V2X) communication techniques enable the collaboration between vehicles and many other entities in the neighboring environment, which could fundamentally improve the perception system for autonomous driving. However, the lack of a public dataset significantly restricts the research progress of collaborative perception. To fill this gap, we present V2X-Sim, a comprehensive simulated multi-agent perception dataset for V2X-aided autonomous driving. V2X-Sim provides: (1) multi-agent sensor recordings from the road-side unit (RSU) and multiple vehicles that enable collaborative perception, (2) multi-modality sensor streams that facilitate multi-modality perception, and (3) diverse ground truths that support various perception tasks. Meanwhile, we build an open-source testbed and provide a benchmark for the state-of-the-art collaborative perception algorithms on three tasks, including detection, tracking and segmentation. V2X-Sim seeks to stimulate collaborative perception research for autonomous driving before realistic datasets become widely available.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2022.3192802